Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "diagnostyka sieci" wg kryterium: Temat


Wyświetlanie 1-14 z 14
Tytuł:
Wykorzystanie sieci komunikacyjnych w aspekcie rozwoju systemów diagnostycznych pojazdów mechanicznych
Application of communication nets in aspect of development of modern systems of car diagnostics
Autorzy:
Śmieja, M.
Piętak, A.
Imiołek, M.
Wierzbicki, S.
Powiązania:
https://bibliotekanauki.pl/articles/208645.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci wymiany danych
CAN
OBD
diagnostyka
network area
diagnostics
Opis:
Rozwój konstrukcji pojazdów samochodowych podyktowany wzrastającymi wymaganiami w stosunku do emisji związków toksycznych oraz poprawy bezpieczeństwa oznacza coraz większą złożoność układów odpowiedzialnych za sterowanie i diagnostykę. Przepływ dużych ilości danych pomiędzy poszczególnymi elementami tych systemów wymusza stosowanie sieci o coraz większej przepustowości i niezawodności. Różnorodny charakter przesyłanych informacji wiąże się z koniecznością dostosowania sposobu transmisji do konkretnych zastosowań. Najistotniejsze właściwości wykorzystywanych protokołów sieciowych, takie jak maksymalne szybkości transmisji, sposób jej inicjacji czy stopień determinizmu czasowego, decydują m.in. o ich przydatności dla efektywnej diagnostyki. Przyjęcie międzynarodowych regulacji prawnych obowiązujących producentów pojazdów takich jak OBD II w zakresie bieżącej i okresowej kontroli stanu technicznego pojazdów obejmuje wymagania i standardy dotyczące przesyłania informacji diagnostycznej. Konsekwencją ciągłego rozwoju motoryzacji są również działania w kierunku traktowania samochodu jako elementu większej struktury niezawodnościowej, możliwej do osiągnięcia dzięki coraz dostępniejszym metodom komunikacji między pojazdem a jego otoczeniem.
The development of modern cars is caused by the ever increasing demand to reduce toxic emission as well as to improve safety. This means that the systems responsible for diagnostics and controlling are becoming more and more complex. The flow of huge amounts of data between particular elements of these systems forces application of nets with greater capacity and increased reliability. Heterogeneous character of carried information is connected with the necessity to fit a type of transmission for a specific use. The most significant features of the used net protocols such as maximum speed, the way of triggering and the degree of time determinism, are the factors which decide about their helpfulness for effective diagnostics. Adoption of international regulations, obligatory for manufactures of cars such as OBDII ones, in the field of current and periodical checks on the technical state of cars, include demands and standards concerning the carrying of diagnostic information. The subsequent effect of such continual developments in motorisation is activity connected with treating a car as an element of a much wider reliability structure. This is possible to achieve thanks to more and more common methods of communication between a car and its environment.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 1; 231-241
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementacja podsystemu diagnostycznego okrętowego zespołu prądotwórczego w środowisku „Open Source”
Implementation of the diagnostic subsystem marine genset in an "Open Source "
Autorzy:
Szubrycht, T.
Powiązania:
https://bibliotekanauki.pl/articles/223236.pdf
Data publikacji:
2006
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
diagnostyka
sieci neuronowe
serwery sieciowe
diagnostics
neural networks
web servers
Opis:
W artykule przedstawiono zaprojektowany podsystem diagnostyki przewidziany do oceny stanu technicznego okrętowego zespołu prądotwórczego. Do przeprowadzenia analizy dostarczonych danych proponuje się wykorzystać sztuczne sieci neuronowe o architekturze determinowanej przez użytkownika. W celu obniżenia kosztów projektu implementację prezentowanego podsystemu diagnostyki zrealizowano w środowisku „Open Source”, czyli tzw. wolnego oprogramowania.
The paper presents a diagnostic subsystem designed to estimate the technical condition of a shipboard generator set. To analyze the data delivered using neural nets of user-determined architecture is suggested. In order to reduce the costs of the project the diagnostic system presented was implemented in „Open Source” environment.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2006, R. 47 nr 2 (165), 2 (165); 161-168
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych do identyfikacji pęknięcia stopy zęba
An identyfication of the degree of the tooth root cracking using the artificial neural network
Autorzy:
Łazarz, B.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/328702.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka
przekładnie zębate
sieci neuronowe
diagnostics
toothed gears
neural networks
Opis:
W opracowaniu przedstawiono wyniki eksperymentu mającego na celu próbę zastosowania sztucznej sieci neuronowej jako klasyfikatora stopnia podcięcia zęba w przekładni zębatej. Klasyfikator neuronowy oparto na sztucznej sieci neuronowej typu SVM z jądrem radialnym. Dane wejściowe do klasyfikatora stanowiła macierz złożona z miar statystycznych. Zidentyfikowany model przekładni zębatej stanowiska FZG posłużył do generacji zbiór uczącego i testującego zastosowanego w eksperymencie.
The work presents results of an experiment that employs the artificial neuronal network in the task of identification of the degree of tooth root cracking. Neural Networks were based on the Support Vector Machine and the radial basis function kernel has been chosen in the experiments. Statistical measures that describe the emergence and degree of tooth gear diagnostic served as input data for the artificial neural networks. The measures employed in the experiment were obtained from signals through the application of a variety of processing methods.
Źródło:
Diagnostyka; 2004, 31; 79-88
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w diagnostyce poprawności wykonania płytek drukowanych
Utilization of neural networks in process of diagnosis of correctness of assembling the printed circuit-boards
Autorzy:
Sikora, M.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/277213.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
diagnostyka
przetwarzanie obrazów
sztuczne sieci neuronowe
diagnostics
image processing
neural networks
Opis:
Artykuł opisuje stanowisko badawcze do diagnostyki optycznej poprawności wykonania płytek drukowanych przesuwających się po taśmie produkcyjnej. Diagnostyka optyczna realizowana jest za pomocą kamery. Obraz z kamery przekazywany jest do komputera PC, gdzie trafia do zaprojektowanego systemu diagnostycznego, zaimplementowanego w środowisku MATLAB. Po wstępnym przetworzeniu obrazy kierowane są do właściwego systemu diagnostycznego wykorzystującego sztuczne sieci neuronowe, który podejmuje ostateczną decyzję o poprawności montażu elementów płytki drukowanej. Cała aplikacja zrealizowana jest w środowisku MATLAB. W artykule zamieszczono wybrane wyniki badań analizujących wpływ aspektów takich, jak rodzaj oświetlenia, sposób obróbki i kompresji obrazu, dobór architektury i parametrów sieci neuronowej na jakość osiąganych wyników.
The paper describes research test stand that is used for optical diagnostics of correctness of assembling of printed circuit-board that moves on a tape. Optical diagnostics is carried out by camera, the images are transferred to computer PC and then to designed diagnostic system implemented in Matlab. After processing of the images they are analyzed by neural networks and the decisions about the correctness of assembling the elements on printed circuit-board are made. The whole application is designed in Matlab environment. The paper presents selected results describing researches carried out in the field of: illumination, image processing techniques, structures and parameters of neural networks and their influence on efficiency of the described system.
Źródło:
Pomiary Automatyka Robotyka; 2011, 15, 2; 49-54
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie dyskretnej transformaty falkowej i probabilistycznych sieci neuronowych w diagnostyce silników spalinowych
Discrete wavelet transform and probabilistic neural network in ic engine fault diagnosis
Autorzy:
Madej, H.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/300909.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
diagnostyka
silniki spalinowe
sieci neuronowe
diagnostics
combustion engines
artificial neural networks
Opis:
W artykule przedstawiono próbę oceny stanu pracy silnika w warunkach symulowanego braku dopływu paliwa do poszczególnych cylindrów oraz próbę wykrywania uszkodzeń zaworów silnika spalinowego za pomocą sygnału drgań rejestrowanego na kadłubie silnika. Obiektem badań był czterocylindrowy silnik spalinowy. W badaniach za źródło informacji o stanie silnika przyjęto sygnały przyspieszeń drgań rejestrowane na kadłubie silnika ZI. W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszej pracy wykorzystano dyskretną transformatę falkową (DWT). Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania probabilistycznych sztucznych sieci neuronowych do oceny procesu dopływu paliwa do cylindrów oraz stanu zaworów w silnikach spalinowych.
The article presents an attempt of evaluating the state of engine operation under simulated shortage of fuel in? ow to individual cylinders and the attempt to detect the valve faults in the engine by using the vibroacoustic signal registered on the engine block. The object of research was a four-cylinder combustion engine. The vibration acceleration signals registered on the engine block ZI were assumed the source of information on the engine condition. In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. As results from the research, there is a possibility of using probabilistic artificial neural networks to assess the process of fuel inflow to cylinders and the condition of the valves in the combustion engines.
Źródło:
Eksploatacja i Niezawodność; 2010, 4; 47-54
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of cepstrum and spectrum histograms of vibration engine body for setting up the clearance model of the piston-cylinder assembly for RBF neural classifier
Wykorzystanie histogramów widma i cepstrum drgań korpusu silnika do budowy wzorców luzu w układzie tłok-cylinder dla klasyfikatora neuronowego RBF
Autorzy:
Czech, P.
Madej, H.
Powiązania:
https://bibliotekanauki.pl/articles/1366311.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
diagnostyka
silniki spalinowe
sieci neuronowe
diagnostics
combustion engines
artificial neural networks
Opis:
W artykule przedstawiono próbę oceny zużycia złożenia tłok-cylinder za pomocą sygnału drgań rejestrowanego na kadłubie silnika ZI. Obiektem badań był czterocylindrowy silnik spalinowy o pojemności 1,1 dm3. Diagnozowanie silnika spalinowego metodami drganiowymi jest szczególnie utrudniona ze względu na występowanie wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Diagnozowanie uszkodzeń silników metodami wibroakustycznymi jest trudne także ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych. W procesie diagnozowania stosuje się różne sposoby selekcji sygnału użytecznego. Zmiany stanu technicznego silnika wywołane wczesnymi fazami jego zużycia są trudne do wykrycia ze względu na maskowania usterek mechanicznych przez adaptacyjne układy sterowania silnika. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania sztucznych sieci neuronowych do oceny luzu w układzie tłok-cylinder.
The paper presents an attempt to evaluate the wear of piston-cylinder assembly with the aid of vibration signal recorded on spark ignition (SI) engine body. The subject of the study was a four-cylinder combustion engine 1.1 dm3. Diagnosing combustion engines with vibration methods is specifically difficult due to the presence of multiple sources of vibration interfering with the symptoms of damages. Diagnosing engines with vibro-accoustic methods is difficult also due to the necessity to analyse non-stationary and transient signals. Various methods for selection of usable signal are utilised in the diagnosing process. Changes of the engine technical condition resulting from early stages of wear are difficult to detect for the effect of mechanical defect masking by adaptive engine control systems. According to the studies carried out, it is possible to utilise artificial neural networks for the evaluation of the clearance in piston-cylinder assembly.
Źródło:
Eksploatacja i Niezawodność; 2011, 4; 15-20
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmów genetycznych oraz analizy PCA do doboru wejść klasyfikatorów uszkodzeń kół zębatych opartych na sieciach neuronowych z radialnym jądrem
Application of genetic algorithm and principal component analysis for choosing inputs for classifiers of tooth gear faults which used neural networks with radial nucleus
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/196879.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
drgania
sieci neuronowe
przekładnie zębate
diagnostics
vibrations
neural networks
gearboxes
Opis:
W artykule przedstawiono wyniki eksperymentów mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni opartego na sztucznych sieciach neuronowych. W badaniach wykorzystywano sieci neuronowe z radialnym jądrem. Dodatkowo podjęto próbę wykorzystania algorytmów genetycznych oraz analizy PCA w celu wyboru wejść klasyfikatora neuronowego. Badania oparto na sygnałach drganiowych otrzymanych z modelu dynamicznego przekładni pracującej w układzie napędowym. W artykule zaproponowano sposób budowy deskryptorów lokalnych uszkodzeń zębów kół, wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz selekcji widmowej.
The paper presents the results of an experimental application of neural network as a classifier of tooth gear faults. The neural classifiers were based on the artificial neural networks with radial nucleus. In the experiment genetic algorithm and principal component analysis were used to check influence of choosing inputs for neural classifier on diagnostic error. The model of gearbox was used in order to create a base of knowledge. The input data for the classifier was in a form of matrix composed of statistical measures, obtained from vibration signals after filtration and selection of spectrum range.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2014, 83; 51-57
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inteligentny system monitorowania sieci wodociągowych
Intelligent monitoring of local water supply system
Autorzy:
Wyczółkowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/301876.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
sieci wodociągowe
diagnostyka
wyciek
lokalizacja
wykrywanie
sieci neuronowe
water supply systems
diagnostics
leakage detection
localization
artificial neural network
Opis:
W referacie przedstawiono badania związane z budową systemu monitorowania sieci wodociągowych, sygnalizujących pojawienie się awarii sieci i wspomagającego ich lokalizację. Podstawowym założeniem omawianego systemu było przyjęcie metody wykrywania awarii stosowanej dotychczas w diagnostyce technicznej maszyn i procesów przemysłowych, opartej o modele przybliżone obiektu diagnozowanego. Bazując na niewielkiej liczbie czujników przepływu zainstalowanych na sieci wodociągowej i odpowiednio wytrenowanej sztucznej sieci neuronowej pojawiające się awarie sieci są wykrywane i lokalizowane. Opisany został pierwszy etap prac (lokalizacja czujników pomiarowych, przygotowanie i trenowanie klasyfikatora neuronalnego) oraz uzyskane wyniki.
In the paper an intelligent monitoring system of local water supply system was described. The author took advantage of methods of artificial intelligence and methods known from model-based process diagnostics to decrease the number of indispensable measuring points. Basing on few flow sensors installed on pipeline network and using neural network as a model of pipeline, appeared leakages are approximately localized. The first stage of system building (choosing of sensor localization, neural network preparing and training) and results obtained to-date were shown.
Źródło:
Eksploatacja i Niezawodność; 2008, 1; 33-36
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
Diagnostics of induction motor bearings with use of supply current signal and artificial neural networks
Autorzy:
Ciszewski, T.
Swędrowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/152328.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
diagnostyka
silnik indukcyjny
sieci neuronowe
uszkodzenia łożysk
diagnostics
induction motor
neural networks
bearings defects
Opis:
W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych wybieranych na podstawie prędkości obrotowej silnika podczas pomiaru. Metoda ta ma szanse na wdrożenie w przemyśle.
The paper contains research results on the diagnostics of induction motor bearings by measuring the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, so their damage-free operation is so important [1]. Tests were performed on objects with intentionally made bearings defects. Section 2 introduces the concept of artificial neural networks. It presents the general structure of a multilayer neural network (Fig.1) and the model of a single neuron (Fig. 2) which explains how to create an output signal (1,2). A backpropagation algorithm was chosen to be the learning method for the network being created. It uses equation (4) for calculating the errors in the k-th layer. As the model data for the network learning, DREAM vibration diagnostics system results were used. Section 3 describes how the network input data was created. The essence of the algorithm is to choose the right set of weights for each rotor speed. This is an innovative solving of this diagnostic problem. The results of this study are listed in Table 1. Equations (6) - (14) describe how each error was counted. The method presented in this paper, after developing, can be very useful for industry.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 4, 4; 316-318
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja wykorzystania sygnałów wibroakustycznych i sieci neuronowych do diagnozowania uszkodzeń elementów silników spalinowych samochodów
Conception of use vibroacoustic signals and neural networks for diagnosing of chosen elements of internal combustion engines in car vehicles
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/196196.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
sygnały WA
sieci neuronowe
silniki spalinowe
diagnostics
vibroacoustic signals
neural networks
combustion engines
Opis:
Obecnie stosowane systemy diagnostyki nie zawsze są skuteczne oraz nie dają jednoznacznych wyników pozwalających ocenić stan techniczny silnika oraz wykryć jego ewentualne uszkodzenia możliwie na wczesnych etapach. Rosnące wymagania dotyczące trwałości, niezawodności, minimalizacji kosztów i niekorzystnego oddziaływania na środowisko naturalne powodują konieczność pozyskiwania informacji o stanie technicznym poszczególnych elementów pojazdów podczas ich eksploatacji. Jedną z możliwości pozyskiwania informacji o stanie technicznym są zjawiska wibroakustyczne. Symptomy uszkodzeń, uzyskane w wyniku zaawansowanych metod przetwarzania sygnałów wibro-akustycznych, mogą stanowić wzorce wykorzystywane w trakcie budowy inteligentnego systemu diagnostycznego opartego na sztucznych sieciach neuronowych. W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do celów diagnozowania silników spalinowych samochodów.
Currently used diagnostics systems are not always efficient and do not give straightforward results which allow for the assessment of the technological condition of the engine or for the identification of the possible damages in their early stages of development. Growing requirements concerning durability, reliability, reduction of costs to minimum and decrease of negative influence on the natural environment are the reasons why there is a need to acquire information about the technological condition of each of the elements of a vehicle during its exploitation. One of the possibilities to achieve information about technological condition of a vehicle are vibroacoustic phenomena. Symptoms of defects, achieved as a result of advanced methods of vibroacoustic signals processing can serve as models which can be used during construction of intelligent diagnostic system based on artificial neural networks. The work presents conception of use artificial neural networks in the task of combustion engines diagnosis.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2014, 82; 51-58
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pewne aspekty wykorzystania sztucznych sieci neuronowych dla identyfikacji i sterowania procesem przemiału cementu
Some aspects of use of artificial neural networks for identification and control of cement grinding process
Autorzy:
Rojek, R.
Bursy, G.
Powiązania:
https://bibliotekanauki.pl/articles/151235.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe
identyfikacja
diagnostyka
sterowanie
przemiał cementu
młyn kulowy
neural networks
identification
diagnostics
control
cement grilling
ball mill
Opis:
artykule przedstawiono wybrane aspekty zastosowania sztucznych sieci neuronowych do identyfikacji i sterowania energochłonnym procesem przemiału cementu. Jest to złożony nieliniowy proces dynamiczny. Sterowanie takim procesem z wykorzystaniem klasycznych układów regulacji nie jest efektywne. Zaproponowano zatem wykorzystanie niestandardowych algorytmów opartych na sieciach neuronowych. Do ich realizacji wykorzystano dane pomiarowe oraz wiedzę operatorów. Badania symulacyjne układu przeprowadzono w środowisku Matlab-Simulink pod kątem optymalizacji struktury sieci i wyboru odpowiedniego procesu uczenia. Uzyskane wyniki potwierdzają możliwości wykorzystania algorytmów neuronowych do sterowania procesem przemiału.
This paper presents selected aspects of application of artificial neural networks to identification and control of the cement grinding process occurring in the closed-circuit ball mill (Fig. 1) [13, 14]. Cement grinding is a complicated, nonlinear, energy-consuming process. Control of the process by means of classical control systems is not effective. Therefore, nonstandard neural network algorithms combined with the inverse modeling method of Jordan and Jacon [2, 15, 18] are proposed for the purpose. The NARX neural network model (Fig. 3) is used, in addition to the expert operator knowledge developed on a basis of a number of experiments run at a domestic cement plant. Simulation runs in the Matlab/Simulink environment are directed to optimization of the network structure and selection of its adequate learning process. The obtained results enable concluding that the application of a neurocontroller to control of the grinding process can yield satisfactory process performance [4].
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 2, 2; 190-192
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagający diagnostykę czerniaka złośliwego przy pomocy metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej
Decision system supporting melanomena detection with the usage of image processing and computational intelligence methods
Autorzy:
Mikołajczyk, A.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/269110.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
diagnostyka
wspomaganie decyzji
przetwarzanie obrazu
sztuczne sieci neuronowe
czerniak złośliwy
diagnostics
decision support
image processing
artificial neural networks
melanoma malignant
Opis:
Nowotwory skóry są najczęściej spotykanymi nowotworami na świecie. Czerniaki złośliwe stanowią od około 5 do 7% wszystkich nowotworów złośliwych skóry u człowieka. Ich wczesne zdiagnozowanie jest kluczowym czynnikiem w późniejszej pomyślnej terapii. Niniejsza praca zawiera propozycję rozwinięcia i zautomatyzowania najważniejszej metody diagnozowania czerniaków, metody ABCD Stoltza. W artykule przedstawiono koncepcję i implementację zautomatyzowanego systemu do diagnostyki znamion skórnych pod kątem wykrycia czerniaka zł ościowego. Zaproponowano nową, rozszerzoną wersję metody dermatoskopowej ABCD i zaimplementowano niezbędne algorytmy w środowisku Matlab. Główne cechy znamion skórnych o charakterze nowotworowym są wyszukiwane automatycznie przy pomocy metod przetwarzania obrazu oraz opracowanych algorytmów. Decyzja na temat rozpoznania lub nie czerniaka złośliwego podejmowana jest przez sztuczną sieć neuronową, wnioskującą na podstawie wskaźników wyznaczonych na etapie przetwarzania obrazów. Omawiany system wspomagania decyzji może służyć jako narzędzie usprawniające pracę lekarzy pierwszego kontaktu lub jako system umożliwiający szybkie samobadanie skóry przez pacjentów. Aplikację przetestowano na 126 znamionach skórnych. Uzyskano czułość równą 98% oraz swoistość równą 73%, co jest bardzo dobrym osiągnięciem.
Skin cancer is the most common cancer in the world. Malignant melanomas make up about 5-7% of all types of human skin cancer. The work describes the development process of an automated system purposed for the diagnosis of skin lesions in order to detect a malignant melanoma. The application should be used as a decision support system for primary care physicians or as a system capable of self-examination of the skin. When designing an application author developed and proposed a new, enhanced version of the ABCD dermatoscopic method of Stoltz. To describe main features of skin lesions for malignancy, image processing methods were used. In addition, application was trained by artificial neural network, which acts as a specialist doctor, who is responsible of making a diagnosis based on these features. The application has been tested on 126 the skin moles. It gets high final score with a sensitivity of 98% and specificity equal to 73.08%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 119-122
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of genetic algorithms in the task of choosing inputs for probabilistic neural network classifier of faults of gear-tooth
Autorzy:
Czech, P.
Mikulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/393327.pdf
Data publikacji:
2015
Wydawca:
Polskie Stowarzyszenie Telematyki Transportu
Tematy:
gearbox
diagnostics
neural networks
Wigner-Ville transform
genetic algorithm
skrzynia biegów
diagnostyka
sieci neuronowe
transformata Wignera-Ville'a
algorytm genetyczny
Opis:
In this article are presented results of trials of building an application based on probabilistic neural network, used to diagnose damages to the gear wheel teeth in the form of cracks at the base of the tooth. To determine the proper network learning process is necessary to get from the tested object numerous set of input data. Conducted researches are based on data obtained from the identified model of gear working in the drive system, which made it possible to acquire the necessary amount of data. In experiments was tested the usefulness of different sets of descriptors of teeth damages, constructed on the basis of vibratory signals, processed using the Wigner-Ville transform. Often the problem, which makes the proper learning of the neural classifiers impossible is the size of the network structure. Therefore, in further studies was examined the usefulness of genetic algorithms which task is selecting an input data for the artificial neural networks of PNN type.
Źródło:
Archives of Transport System Telematics; 2015, 8, 3; 15-19
1899-8208
Pojawia się w:
Archives of Transport System Telematics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie SSN do predykcji zużycia węglowych nakładek odbieraka prądu
Application of artificial neural networks for prediction of pantograph carbon strips wear
Autorzy:
Kuźnar, M.
Powiązania:
https://bibliotekanauki.pl/articles/404331.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
odbierak prądu
pantograf
węglowa nakładka ślizgowa
diagnostyka
prognoza zużycia
sztuczne sieci neuronowe
SSN
current collector
pantograph
carbon sliding strip
diagnostics
wear prediction
artificial neural networks
ANN
Opis:
Odbieraki prądu w pojeździe trakcyjnym służą do poboru prądu z sieci trakcyjnej. Elementem mającym bezpośredni kontakt z przewodem jezdnym jest ślizgacz, a dokładniej węglowa nakładka stykowa, narażona zarówno na zużycie eksploatacyjne, jak i różnego rodzaju uszkodzenia związane z użytkowaniem. Jest elementem odbieraka najczęściej wymienianym. W celu ustalenia przyczyny uszkodzenia nakładki konieczna jest znajomość typu uszkodzenia. Przyczyna wymiany nakładki wnioskowana może być na podstawie charakterystyki zużycia węglowych nakładek stykowych. W celu predykcji zużycia węglowych nakładek stykowych zastosowano Sztuczną Sieć Neuronową typu Feed-Forward z propagacją wsteczną o 6 warstwach ukrytych po 10 neuronów w każdej warstwie. Błąd średniokwadratowy dla procesu uczenia sieci wyniósł 0,578, a wyniki dotyczące predykcji zużycia nakładki przedstawiono w artykule.
In the traction vehicles, current consumption from the overhead contact line is possible thanks to the current collectors (pantographs). An element that has a direct contact with the contact wire is a slide plate, and more specifically, a carbon contact strips. Affected by both operational wear and various types of damage related to operational maintenance, carbon strip is the element which most commonly need to be exchanged. To determine the cause of damage to the contact strip, it is necessary to know the type of damage. The reason for replacing the carbon contact strip may be claimed on the basis of the wear characteristics. In order to predict the wear of carbon strip, a Feed-Forward Artificial Neural Network with backward propagation of 6 hidden layers and 10 neurons in each layer was applied. The mean square error for the network learning process was 0.578, and the results for the pantograph contact strip wear were presented in the article.
Źródło:
Symulacja w Badaniach i Rozwoju; 2017, 8, 3-4; 97-103
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-14 z 14

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies