Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Inteligentny system monitorowania sieci wodociągowych

Tytuł:
Inteligentny system monitorowania sieci wodociągowych
Intelligent monitoring of local water supply system
Autorzy:
Wyczółkowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/301876.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
sieci wodociągowe
diagnostyka
wyciek
lokalizacja
wykrywanie
sieci neuronowe
water supply systems
diagnostics
leakage detection
localization
artificial neural network
Źródło:
Eksploatacja i Niezawodność; 2008, 1; 33-36
1507-2711
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W referacie przedstawiono badania związane z budową systemu monitorowania sieci wodociągowych, sygnalizujących pojawienie się awarii sieci i wspomagającego ich lokalizację. Podstawowym założeniem omawianego systemu było przyjęcie metody wykrywania awarii stosowanej dotychczas w diagnostyce technicznej maszyn i procesów przemysłowych, opartej o modele przybliżone obiektu diagnozowanego. Bazując na niewielkiej liczbie czujników przepływu zainstalowanych na sieci wodociągowej i odpowiednio wytrenowanej sztucznej sieci neuronowej pojawiające się awarie sieci są wykrywane i lokalizowane. Opisany został pierwszy etap prac (lokalizacja czujników pomiarowych, przygotowanie i trenowanie klasyfikatora neuronalnego) oraz uzyskane wyniki.

In the paper an intelligent monitoring system of local water supply system was described. The author took advantage of methods of artificial intelligence and methods known from model-based process diagnostics to decrease the number of indispensable measuring points. Basing on few flow sensors installed on pipeline network and using neural network as a model of pipeline, appeared leakages are approximately localized. The first stage of system building (choosing of sensor localization, neural network preparing and training) and results obtained to-date were shown.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies