Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "biogaz" wg kryterium: Temat


Tytuł:
Impact of Ultrasonic Pretreatment on the Anaerobic Fermentation of Dairy Waste Activated Sludge
Wpływ kondycjonowania polem ultradźwiękowym na fermentację metanową osadów ściekowych z przemysłu mleczarskiego
Autorzy:
Worwąg, M.
Grosser, A.
Neczaj, E.
Kamizela, T.
Powiązania:
https://bibliotekanauki.pl/articles/1813712.pdf
Data publikacji:
2018
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogas
anaerobic fermentation
ultrasound
biogaz
fermentacja metanowa
ultradźwięki
Opis:
In this paper, we focused on the effects of ultrasound (US) irradiation at different parameters on solubilization, biodegradation and anaerobic fermentation of sludge from the dairy industry. The changes of TOC in soluble fraction of sludge, the biogas yield, and the methane content in the biogas were used as control parameters for evaluating the effects of the US pretreatment. The optimal sonication parameters were found to be an exposure time of 18 min and ultrasound wave amplitude of 48,8 µm. The UD field conditioning positively influenced the process effects measured by the biogas production coefficient. In comparison to the control sample in sediments conditioned with a UD field with an amplitude of 36.6 μm, 48.8 μm and 61.0 μm, an increase was noted in the above-mentioned parameter by 38, 73 and 60%, respectively.
W niniejszym artykule określono wpływ preparowania przemysłowych osadów ściekowych polem ultradźwiękowym na efekt fermentacji metanowej. Najkorzystniejsze parametry nadźwiękawiania dla preparowanych osadów, ustalono na podstawie zmian TOC w wodzie nadosadowej oraz efektów fermentacji metanowej w układzie ciągłym, wyrażonej wzrostem produkcji biogazu oraz ubytku suchej masy organicznej. Na podstawie uzyskanych wyników stwierdzono, że optymalne parametry nadźwiękawiania to czas ekspozycji wynoszący 18 minut i amplituda drgań 48.8 μm. Kondycjonowanie polem UD pozytywnie wpłynęło na efekty procesu, wyrażone współczynnikiem produkcji biogazu. W porównaniu do próby kontrolnej w osadach kondycjonowanych polem UD o amplitudzie 36.6 μm, 48.8 μm i 61.0 μm odnotowano zwiększenie ww. parametru odpowiednio o 38, 73 i 60%.
Źródło:
Rocznik Ochrona Środowiska; 2018, Tom 20, cz. 1; 512-527
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of measurement methods and estimation of biogas emission from landfills
Ocena metod pomiaru i szacowania emisji biogazu ze składowisk odpadów
Autorzy:
Biszek, M.
Pawłowska, M.
Czerwiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/1826143.pdf
Data publikacji:
2006
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
zanieczyszczenia gazowe
zanieczyszczenie środowiska
składowisko odpadów
emisja zanieczyszczeń
Opis:
Ocena ładunku zanieczyszczeń gazowych dostających się do atmosfery ze składowisk odpadów zawierających frakcję organiczną dokonywana być może na podstawie rzeczywistych pomiarów szybkości emisji lub na podstawie oszacowań teore-tycznych, przy przyjęciu pewnych założeń. Obie metody nie są niezawodne. Przyjęcie uśrednionych wartości parametrów stosowanych w oszacowaniach teoretycznych pociąga za sobą błędy. Zmienność emisji biogazu w czasie i w przestrzeni oraz niedoskonałość metod jej pomiaru, sprawia, że wyniki mają charakter chwilowy lub są niedokładne, a obliczenia ilości biogazu dostającego są do atmosfery w długim czasie są również obarczone błędem. Dokładność pomiaru, choć nie eliminuje błędów to jednak znacząco je redukuje. Przyjęta metoda nie pozostaje więc bez wpływu na uzyskany wynik końcowy obliczeń. Wybór właściwej pod względem dokładności metody jest ważnym krokiem w ocenie oddziaływania składowiska na atmosferę. Nie zawsze jednak dokładności jest najważniejszym kryterium wyboru metody. Często przewagę nad nim mają względy ekonomiczne. W pracy przedstawiono przegląd i ocenę najważniejszych metod pomiaru emisji biogazu (lub tylko metanu) ze składowisk odpadów. Estymacja emisji gazu składowiskowego nie jest metodą jego pomiaru, ale pozwala na teoretyczne oszacowanie strumienia emisji biogazu z składowisk odpadów. Emisja biogazu jest szacowana przy wykorzystaniu standardowej metody IPCC (dotyczy metanu) albo metodą trójkąta. Późnie może to być porównane z rezultatami uzyskanymi na drodze bezpośrednich pomiarów. Kraje rozwinięte są zobowiązane do stabilizacji emisji gazów cieplarnianych za Konwencją Generalną Narodów Zjednoczonych. Między innymi ta umowa wymaga prowadzenie całorocznego rejestru emisji gazów cieplarnianych zgodnie z zaleceniami Międzyrządowego Panelu nt. Zmian Klimatu - IPCC. Metoda standardowa daje niezawodną coroczną ocenę potencjalnej emisji gdy masa zdeponowanych odpadów jest stała lub zmienia się nieznacznie podczas kilku dziesięcioleci. Trójkątna metoda potwierdza, że oceniając emisję zależną od czasu, pasuje do prawdziwego model procesu degradacji w czasie. Zamierzając definiować emisję biogazu na podstawie z tej metody, powinno się dysponować danymi dotyczącymi ilości odpadów i ich składu, jak również metody składowania na danym składowisku odpadów z około kilku dziesięcioleci. Jedna doskonała metoda, która pozwala dokładnie określić emisję biogazu ze składowiska odpadów nie istnieje. Jakkolwiek, istnieje kilka metod, które zostały przetestowane w różnych warunkach. Niektóre z nich są używane do oceny emisji biogazu z małych obszarów, podczas gdy inne pozwalają określić emisję z dużych powierzchni, np. z całego składowiska odpadów. Pierwsza grupa metod to: metoda komór, metoda podpowierzchniowego pionowego gradientu stężenia; wśród drugiej grupy metod są: metody mikro-meteorologiczne, metoda izotopowa, metoda wskaźnikowa i spektroskopia IR. Metoda pomiaru korzystająca z komór opiera się na znajomości objętości po-wietrza, gdzie wzrost stężenia gazu składowikowego przechodzącego przez znajome pole powierzchni gleby jest obserwowane przez określony czas. Metoda podpowierzchniowego pionowego gradientu została opisana przez Rolstona w 1986 i opiera się na prawie dyfuzji Ficka. Aby stosować tę metodę przy określaniu rozmiar emisji gazu składowiskowego, trzeba znać wartość prędkości dyfuzji gazu w glebie i gradient stężenia gazu w powietrzu w glebie. Emisja gazu jest obliczona na podstawie wzoru. Metody mikro-meteorologiczny są stosowane dla oznaczania przepływów gazów nad powierzchnią badanego obiektu. Izotopowe frakcjonowanie jest odmiana metody modelu addytywnego. Opiera się ona na pomiarze stosunku izotopu. Spektroskopia w podczerwieni (IR) to prosty i łatwy w stosowaniu sposób po-miaru przepływu gazu. Metody widmowe pozwalają oznaczyć stężenie różnych gazów, np. CH4, CO2, CO. Są metodami opartymi na adsorpcji podczerwieni.
Źródło:
Rocznik Ochrona Środowiska; 2006, Tom 8; 27-43
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ składu jakościowego substratów oraz obciążenia komory ładunkiem związków organicznych na skład i ilość uzyskiwanego biogazu
The effect of substrate qualitative composition and chamber load of organic matter on composition and amount of produced biogas
Autorzy:
Dębowski, M.
Zieliński, M.
Krzemieniewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819747.pdf
Data publikacji:
2009
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
odpady organiczne
utylizacja odpadów
substrat
biogas
organic compounds
Opis:
Mimo intensywnego rozwoju technologii oraz metod postępowania z odpadami organicznymi podatnymi na biodegradację, wciąż poszukuje się rozwiązań umożliwiających ich opłacalna neutralizację. Korzystnym zarówno z punktu widzenia środowiska, jak również pozwalającym na wykorzystanie potencjału energetycznego tkwiącego w tego rodzaju substratach organicznych jest zastosowanie procesu fermentacji metanowej. Jest to sprawdzone rozwiązanie gwarantujące uzyskanie biogazu oraz produktu końcowego, który może być wykorzystany przyrodniczo [2, 4, 7, 10]. Energetyka odnawialna, w tym także technologie energetycznego przetworzenia substratów organicznych, wydają się być jednym ze sposobów na ograniczenie skali problemów związanych ze wzrostem cen i wyczerpywaniem zasobów konwencjonalnych źródeł energii. Wynikiem tych działań jest również istotny efekt ekologiczny, który dotyczy zmniejszenia emisji do atmosfery gazów i pyłów powstających podczas spalania paliw kopalnych [11, 3].
Despite the intense development of technology and methods of handling biodegradable organic waste, solutions are still being sought to enable its profitable neutralization. One such approach, which is both beneficial for the environment and makes use of the energetic potential of such organic substrates, is the application of methane fermentation. It is a solution which guarantees the production of biogas and a final product which may be naturally utilized. The aim of the study was to characterize potential substrates used in the process of biogas production (corn silage, liquid pig manure, flour production waste), supplied by food production plants, and evaluation of the methane fermentation process with various technological variants. The experiments were conducted under laboratory conditions. Depending on the experiment phase and the scope of the research work, the experiment was divided into two phases. The first included an analysis of the composition of the substrates for biogas production in terms of their hydration and concentration of organic matter. In the second part of the experiment, mixtures of organic substrates were prepared in appropriate proportions and a one-step methane fermentation was performed, employing measuring equipment which measured to what extent the organic matter is degradable and monitored the amount and composition of the produced biogas. The experiment found that the application of a substrate mixture, consisting of corn silage, liquid pig manure, with a small proportion of flour production waste, allows for production of biogas containing more than 60% methane. It was found that the highest intensity of high-energy fuel production is achieved in those technological variants in which the ratio of corn silage to liquid pig manure (w/w) ranges from 1:1 to 2:1. The highest amount of biogas and its best qualitative composition were achieved in those experimental series. Within the analyzed range of the laboratory anaerobic chamber loads with organic impurities, the application of a load of 2.0 kgd.o.m./m3 d proved the most profitable due to the highest biogas production per unit mass of the substrate.
Źródło:
Rocznik Ochrona Środowiska; 2009, Tom 11; 1179-1189
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Słoma kukurydziana jako surowiec do produkcji biogazu
Maize straw as a feedstock for biogas production
Autorzy:
Styszko, L.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/1819660.pdf
Data publikacji:
2010
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
słoma kukurydziana
roślina energetyczna
biogas
maize straw
energy plant
Opis:
Skojarzona uprawa kukurydzy na Pomorzu na ziarno z wykorzystaniem słomy jako surowca do biogazowi pozwoliła wyprodukować przeciętnie 4,81÷6,84 t ha-1 suchej masy słomy .2. Na zawartość suchej masy w słomie kukurydzy i jej plon największy wpływ miały czynniki losowe związane z przebiegiem pogody w latach i miejscowościach oraz odmiany i dawki azotu.3. Plon suchej masy słomy wzrastał różnie w seriach badań w miarę wzrostu dawki nawożenia azotem. W latach 2002÷2003 najwyższe plony słomy uzyskano na dawce 100 kg ha-1 N, a w latach 2005÷2006 na dawce 200 kgźha-1 N. Najwyższą zawartość suchej masy oraz włókna surowego w słomie uzyskano na obiektach bez nawożenia azotem, a najniższą - na dawce 200 kg ha-1 N. Odwrotne zależności były przy zawartości białka ogólnego oraz magnezu w suchej masie słomy. 5. Słoma odmian kukurydzy różniła się zawartością suchej masy, popiołu, białka, tłuszczu i włókna surowego oraz bezazotowych wyciągowych, a także metali alkalicznych.
Maize is versatile. It can also be used as an energy plant in the form of grain or silage made of whole plants. A combined use of maize in the form of maize grain used as animal feed, and straw - for the power, mainly on biogas is also suggested. However, such use of corn is limited by content of dry mass and nutrients in the straw. The aim of this study was to assess the importance of growing seasons, locations, doses of nitrogen and variations in the variability of the chemical composition of straw during cultivation of grain maize in Pomerania. Material for analysis were the results of strict experiments conducted in the years 2002-2003 and 2006-2005 in three locations (Wolinia near Lebork and Mscice near Koszalin - region III of maize cultivation and Mieszkowice near Kostrzyna - region II) in private farms. Experiments were established on soil of grade class Illa-IVb, using method of randomized sub blocks in the dependent system in three repetitions, where level I sub blocks were four to five doses of nitrogen and level II - four to seven varieties of maize. After harvesting, content of dry mass and dry mass yield of straw were determined. Qualitative composition of straw was determined by analysing following parameters in the dry mass of straw: ash, protein, fat, crude fiber and nitrogenless liftings. Results of experiments show that the combined cultivation of maize grain in Pomerania with straw usage as raw material for production biogas allowed to produce average of 4.81-6.84 t ha"1 of straw dry mass. Randomness factors related with weather in years and locations, varieties and nitrogen doses had the biggest impact on the dry mass content in the maize straw and its yield. Straw dry mass yield increased differently in the series of experiments with increasing doses of nitrogen fertilization. In the years 2002-2003 the highest straw yield was obtained at a dose of 100 kg-ha"1 N, in the years 2005-2006 at a dose of 200 kgha"1 N. The highest content of dry mass and crude fibre in the straw was obtained for objects with no nitrogen fertilization, and the lowest - at a dose of 200 kg-ha"1 N. Inverse relationships were obtained at the contents of total protein and magnesium in the dry mass of straw. Straw of maize varieties differed in dry mass, ash, protein, fat and crude fibre and nitrogenless liftings, as well as alkali metals content.
Źródło:
Rocznik Ochrona Środowiska; 2010, Tom 12; 191-206
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wydajności produkcji biogazu w procesie fermentacji metanowej wybranych roślin energetycznych
Comparison of biogas output during methane fermentation of selected energy plants
Autorzy:
Grala, A.
Dudek, M.
Zieliński, M.
Dębowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819431.pdf
Data publikacji:
2011
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
rośliny energetyczne
fermentacja metanowa
biogaz
energy plants
anaerobic digestion
biogas
Opis:
Ze względu na obowiązek osiągnięcia przez Polskę do końca 2010 r. wskaźnika 7,5% energii pochodzącej ze źródeł odnawialnych wzrosło zainteresowanie nowymi gatunkami roślin, które charakteryzują się wysokim plonem biomasy. Biomasa staje się surowcem coraz bardziej poszukiwanym przez zakłady energetyczne oraz użytkowników indywidualnych [1]. Obecnie prowadzi się wiele prac badawczych nad biogazowaniem roślin z upraw energetycznych. Eksperyment opisany w niniejszym artykule przeprowadzony został z wykorzystaniem dwóch gatunków trawy z rodziny wiechlinowatych, Miscanthus giganteus i M. sacchariflorus. Ze względu na dużą zawartość lignocelulozy gatunki te często wykorzystywane są do produkcji biopaliw.
Efficient conversion of plant material in the biogas is a challenge due to the complex structure of the cell wall of plants. In order to facilitate rapid and effective hydrolysis of carbohydrates pretreatment of biomass [2] is required. Pretreatment of lignocellulosic materials can be carried out in a physical, chemical, physical-chemical and biological way [3]. Finding the right method of conducting the process of conditioning before anaerobic digestion is the subject of numerous studies. They are looking for methods that help to obtain a gas with higher efficiency. The reported study was undertaken in order to determine the effect of preliminary hydrothermal depolymerization on the efficiency of methane fermentation process in terms of quantity and composition of biogas obtained from two grass species: Miscanthus giganteus and Miscanthus sacchariflorus. The substrate was mechanically fragmented using a shredding machine Robot Coupe Blixer, and then prepared the plant material underwent hydrothermal depolymerization. This process was conducted in a pressure reactor with a active volume of 2.3 dm3. The reactor was fed with 600 g of Miscanthus biomass of hydration of 90% and organic matter content of 10% in fresh weight. The reactor with the plant material was incubated at 200°C and a pressure of 17 Ba for 30, 60 and 120 minutes in a muffle furnace. The processed plant substrate was next subjected to mesophilic fermentation. Application of hydrothermal depolymerization led to an increase in biogas quantity and improve its quality, the longer the conditioning time, the better outcome of this process. Due to content of methane in the biogas and the calorific value of methane Miscanthus saccharifloru was found to be more efficient. The study showed the relationship between the time of thermal depolymerization plant substrate, and the amount and composition of biogas produced in the process of methane frmentation. With the time of thermal depolymerization of both species tested the amount of the resulting biogas increased. Comparing two of the studies plants for their use as feedstock in biogas farm had a higher potential for Miscanthus sacchariflor. Comparing the calorific value of the two grass species, we can see that a much better substrate proved to be the Miscanthus saccharifloru. this species also proved to be particulary vulnerable to heat. Taking into account the ratio of the energy value of the resulting biogas for thermal conditioning of the time proved to be effective biogas Miscanthus sacchariflour. Based on the survey it was found that the conditioning process improves the fermentation process. Batter substrate in terms of quality and quality of biogas has proved to be a Miscanthus sacchariflour . Miscanthus sacchariflour resulted in obtaining biogas methane content min 12 prec. more than the Miscanthus giganteus fermentation.
Źródło:
Rocznik Ochrona Środowiska; 2011, Tom 13; 1360-1371
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efekty beztlenowego procesu przetwarzania odpadowych substratów organicznych pochodzących z przemysłu mięsnego
Effects of organic substrate from meat processing industry anaerobic transformation process
Autorzy:
Zieliński, M.
Dębowski, M.
Krzemieniewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819795.pdf
Data publikacji:
2009
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
substraty organiczne
przemysł mięsny
biogas
organic substrate
meat processing industry
Opis:
Proces fermentacji metanowej, powszechnie wykorzystywany do unieszkodliwiania osadów ściekowych [2, 9] w ciągu ostatnich kilkunastu lat znalazł szerokie zastosowanie w oczyszczaniu bardzo stężonych ścieków przemysłowych. [1, 3÷5, 8]. Układy anaerobowe funkcjonują najczęściej jako samodzielne systemy zapewniające jakość odpływu na wymaganym poziomie (ładunek zanieczyszczeń organicznych eliminowany jest w przedziale 70÷90%) lub jako I stopień usuwania zanieczyszczeń, po których następują kolejne etapy oczyszczania. W ostatnich latach tego typu rozwiązania stosowane są w procesach przeróbki odpadowych substratów organicznych w celu ich neutralizacji i pozyskania wysokoenergetycznego biogazu. Na proces fermentacji metanowej składa się szereg przemian biochemicznych, w efekcie których złożone związki organiczne ulęgają przemianie do produktów końcowych w postaci metanu i dwutlenku węgla. W pierwszej kolejności zachodzi hydroliza złożonych związków białek, cukrów, tłuszczy. Proces ten prowadzony jest przez bakterie hydrolizujące, a jego efektem jest powstanie aminokwasów, monosacharydów, wyższych kwasów tłuszczowych.Związki te staja się substratem do kolejnego etapu przemian - kwasogenezy. Jej efektem jest powstanie lotnych kwasów tłuszczowych. Ostatnim etapem jest produkcja metanu, która może zachodzić bądź w wyniku dekarboksylacji kwasu octowego lub poprzez procesy redukcyjno-metanogenne (redukcja CO2 do CH4 przy udziale H2). Ostatni etap fermentacji czyli metanogeneza decyduje o szybkości całego procesu. Szybkość wzrostu mikroorganizmów biorących udział w tej fazie jest znacznie niższa niż bakterii kwasogennych stąd zapewnienie optymalnych warunków dla metanogenezy stanowi o sprawności całego procesu. Co ciekawe wszystkie mikroorganizmy metanogenne zaliczane są do osobnej domeny. W królestwie Procariota wyróżnia się dwie zasadniczo różne grupy organizmów, domenę Bacteria (większość współczesnych szczepów bakterii, brak organizmów metanogennych, niewielka liczba gatunków żyjących w warunkach ekstremalnych) oraz domenę Archea (wszystkie organizmy metanogenne, liczne gatunki żyjących w warunkach ekstremalnych). Stosowanie systemów beztlenowych jest uzasadnione ze względu na uzyskiwane efekty technologiczne i ekonomiczne. Niska energochłonność, pięciokrotnie mniejszy w stosunku do systemów tlenowych przyrost biomasy osadu, ograniczenie rozprzestrzeniania się aerozoli i odorów oraz szybki rozruch nawet po długiej przerwie w eksploatacji to dodatkowe atuty przemawiające za upowszechnianiem metod beztlenowych [6, 7, 10]. Celem badań było określenie wydajności procesu fermentacji metanowej odpadów organicznych pochodzących z przemysłu mięsnego oraz charakterystyka powstającego fermentatu.
Alternative, renewable forms of energy are gaining increased importance in the trend to complement or even substitute conventional energies. Biogas production and utilization is a feasible and energetically interesting projection with an immense resource potential in nature available for energy production. The anaerobic degradation of organic matter is a multi-phase process comprising acidogenesis and subsequent methanogenesis. In the first phase, complex organic materials, carbohydrates, amino acids, long-chain fatty acids and alcohols are degraded to intermediary products such as shortchain fatty acids, which are metabolised in the subsequent phase. The aim of the study was to characterize efficiency of biogas production and parameters of the digested charge. The experiments were conducted under laboratory conditions. Depending on the substrate composition and the scope of the research work, the experiment was divided into four phases. The two stage anaerobic fermentation of liquid municipal organic waste at mesophilic conditions (40 °C) was investigated in a continuously stirred 0,4 dm3 hydrolyser and 4,0 dm3 anaerobic reactor. The time of substrate retention in the biogas system was 40 days, and the load of impurities was about 2.0 kg o. m./m3 ź d.During the experiment physicochemical analyses of raw and digested chargewas performed. The scope of analyses included the dry mass, content of organicsubstances, mineral substances, hydration, total nitrogen, total phosphorus, calcium, magnesium, reaction, volume of biogas and content of methane. Conducted investigations permit to affirm, it that the highest technological effect was observed in stage II experiment, when in substrate composition predominated meat wastes. Biogas quantity was about 510 m3/t dry organic matter. Content of methane in biogas was 65%. The lowest technological efficiency was shown in stage IV. The quantity of biogas was between 370÷410 m3/t dry organic matter. The highest efficiency biogas production was observed near 30 day of exploitation of anaerobic bioreactor. The longer time of exploitation influenced on limitation biogas production and methane kontent
Źródło:
Rocznik Ochrona Środowiska; 2009, Tom 11; 787-797
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ diazynonu (Basudin 25EC) na proces fermentacji metanowej komunalnych osadów ściekowych
Impact of Diazinon (Basudin 25EC) on the Anaerobic Digestion Process of Municipal Sewage Sludge
Autorzy:
Sadecka, Z.
Myszograj, S.
Sieciechowicz, A.
Płuciennik-Koropczuk, E.
Powiązania:
https://bibliotekanauki.pl/articles/1818611.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
insektycydy
toksyczność
fermentacja metanowa
biogaz
insecticides
toxicity
anaerobic digestion process
biogas
Opis:
The process of methane fermentation is a labile process, sensitive to changes in the environment and susceptible to various substances which may turn out to be toxic for anaerobic biocenosis. The process may be inhibited by both the substances supplied together with the substrate and also the products resulting from the decomposition phases. The group of toxic substances which influences the fermentation process comprises heavy metals, organic compounds, ammonia nitrogen, lower organic acids, nitrogen or sulphur compounds, add to this a large group of organic micropollutants such as hormones added to fodder, disinfectants, insecticides, chemotherapeutics, antibiotics or chemical plant protection products which are all overlooked. These compounds, while occurring in the media subjected to anaerobic stabilisation, may cause a decrease in the speed of the process, possibly also causing its disruption. The inhibitory effect of various chemical compounds on the course of the fermentation process may be evaluated on the basis of the characteristics of the microorganism community, dynamics of changes in its structure and activity of the population. The determination of the activity of enzymes participating in the methane fermentation may be used to evaluate the impact of xenobiotics on the fermentation process and the efficiency of methane production. In the operational practice referring to the fermentation equipment, the impact of biotic and abiotic factors may be evaluated on the basis of changes in the process parameters. The changes in the quantity of microorganisms and the low enzymatic activity cause a decrease in the efficiency of biogas production including methane, as well as a reduction in the effectiveness of the process measured by the loss of the content of organic compounds. The paper presents the results of laboratory tests, concerning the effect of diazinon on the course of biogas production in the process of the methane fermentation of municipal sewage sludge. Diazinon is one of the representatives of phosphate insecticides and an active substance of the commercial preparation bearing the name Basudin 25EC. The effect of the preparation on the course of the process of methane fermentation of sewage sludge was studied within a dose range from 0.5 to 30 mg/ dm-3. The characteristic indicators of the course of anaerobic stabilisation of sewage sludge include the quantity and the composition of the fermentation gas in reference to the fermentation temperature and time. Based on the changes of these parameters, the inhibitive effect of diazinon contained in the Basudin 25EC technical preparation was evaluated. The biogas production in sludge with various doses of diazinon was assumed as a measure of toxicity in reference to the control sludge. The results of the studies showed that: Anaerobic microorganisms are characterised by sensitivity to the Basudin 25EC utility preparation (with a content of 25% diazinon). The first symptoms of the inhibition of the fermentation process occurred at doses of the preparation amounting to 0.5, 1 and 2 mg/dm-3. The inhibition is confirmed by a decrease in the biogas production of about 10%. The intensification of inhibition symptoms was evident at doses ranging from 4 to 8 mg/ dm-3. The reduction in biogas production ranged from 13,0–25,0%. In the sludge where the greatest dose of the preparation was applied, that is, 30 mg/ dm-3, the biogas efficiency went down from 522 dm-3/kg of dry matter to 57.0 dm-3/kg of dry matter. A 10 mg/ dm-3 dose of Basudin 25EC, causing a 60% decrease in the efficiency of biogas production (from 522 to 211 dm-3/kg of dry matter) must be regarded as toxic for the process of methane fermentation of municipal sludge sewage.
Źródło:
Rocznik Ochrona Środowiska; 2015, Tom 17, cz. 2; 931-942
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ sposobu wstępnego preparowania odpadów poubojowych na ilość i skład powstającego biogazu w warunkach fermentacji termofilowej
Effect of method of post-slaughter waste conditioning on amount and composition of biogas produced in thermophilic fermentation
Autorzy:
Zieliński, M.
Dębowski, M.
Krzemieniewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819689.pdf
Data publikacji:
2010
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
preparowanie odpadów ubojowych
biogaz
fermentacja termofilowa
slaughter waste preparation
biogas
thermophilic fermentation
Opis:
Celem prezentowanych badań było określenie takiego sposobu wstępnego przygotowania, stosowanych w eksperymencie odpadów poubojowych, który zapewni uzyskanie najwyższych efektów technologicznych charakteryzowanych poprzez ilość oraz skład jakościowy powstającego biogazu w warunkach fermentacji termofilowej.
The aim of this study was to identify the method of pre-treatment of post-slaughter waste used in the experiment to ensure the best technological results, expressed by the amount and qualitative composition of the biogas produced in the process. The application of various methods of processing of postslaughter waste before methane fermentation in an experiment conducted under static conditions showed that comparable technological effects were achieved when homogenisation followed by pasteurisation was applied and in such series inwhich these were supplemented by sonic treatment of the substrate. The application of various methods of processing of post-slaughter waste before methane fermentation in an experiment conducted under static conditions showed that comparable technological effects were achieved when homogenisation followed by pasteurisation was applied and in such series in which these were supplemented by sonic treatment of the substrate. Regardless of the pasteurisation time and the combined time of pasteurisation andultrasonic treatment, no statistically significant differences were found in the technological results achieved in terms of the amount and composition ofthe biogas produced in the process and the degree of decomposition of the analysed organic compounds. The worst final results of methane fermentation of post-slaughter waste were achieved when homogenisation was the only type of treatment applied in the organic substrate pre-processing. When homogenisation was combined with ultrasonic treatment, significantly better results were achieved; these were, however, distinctly lower than those achieved in the series in which pasteurisation was applied. The element which most greatly affected the technological effects achieved in the experiment, was the load of organic matter applied to the activatedsludge. The lowest effectiveness of the process, regardless of the method of conditioning of post-slaughter waste, was achieved in the option with a load of 6.0 g of dry organic matter/g of dry matter of sludge. The results achieved in static conditions with loads ranging from 1.0 g of dry organic matter/g of dry matter of sludge to 3.0 g of dry organic matter/g of dry matter of sludge producedcomparable final results, expressed as the amount and composition of biogas as well as the degree of decomposition of the analysed organic substances.
Źródło:
Rocznik Ochrona Środowiska; 2010, Tom 12; 895-907
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supporting Sustainable Agriculture: the Potential to Reduce GHG Emissions – the Case of Agricultural Biogas Production in Poland
Wspomaganie zrównoważonego rolnictwa: potencjał redukcji emisji gazów cieplarnianych – przypadek produkcji biogazu rolniczego w Polsce
Autorzy:
Sulewski, P.
Majewski, E.
Wąs, A.
Powiązania:
https://bibliotekanauki.pl/articles/1813652.pdf
Data publikacji:
2018
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogas
greenhouse gasses
emission
sustainable agriculture
biogaz
gazy cieplarniane
emisja
rolnictwo zrównoważone
Opis:
Agricultural sector can become a major producer of renewable energy from different sources, including such as animal wastes (natural fertilizers). It is important due to its potential role in mitigating negative externalities generated by agricultural sector, among other greenhouse gas emissions, mainly from the livestock sector. Within the European Union the Polish agriculture is the fourth largest producer of methane and nitrogen oxide from agricultural production, with a share of 7.8%. This paper aims to assess the potential reduction of GHG emissions in Poland due to biogas production based on manure anaerobic fermentation. Possible biogas production was estimated for a population of 731 thousand Polish livestock farms with the use of data from the FADN sample, which represents about 97% of the animal production sector in Poland. The potential reduction of methane emissions was calculated as CO2 equivalent for three scenarios: • hypothetical, assuming the use of natural fertilizers from all livestock in Poland, • theoretically workable, assuming that the minimum scale of animal production for viable investment in biogas production in the farm exceeds 30 Livestock Units, • realistic scenario – assuming that only a half of farms with animal herds greater than 30 LU would undertake biogas production. Reduction of GHG emissions can be achieved through elimination of manure storage and processing natural fertilizers into biogas, next converted into electricity and heat, as well as due to emissions avoided as a result of the increased share of "clean energy" in the total energy consumption and a lower use of fossil fuels (e.g. coal) in conventional power plants. According to the estimates, the use of natural fertilizers for energy production would reduce greenhouse gas emissions from agriculture by 17.4% in the hypothetical scenario, 5.0% in the theoretically workable and about 2.5% in realistic scenario (1.54%, 0.45% and about 0.22% respectively of total emissions from various sources nationwide). In the current market situation mainly due to relatively low energy prices production of electricity from small scale agricultural biogas plants in Poland is not profitable without subsidies. Growth of the agricultural biogas industry would facilitate meeting the EU Energy Strategy targets making the agricultural sector more sustainable.
Sektor rolnictwa może stać się znaczącym producentem energii odnawialnej ze źródeł rolniczych, takich jak odpady z produkcji zwierzęcej (nawozy naturalne). Wzmocniłoby to możliwy wkład energii odnawialnej w łagodzenie negatywnych efektów zewnętrznych generowanych przez sektor rolny. Należy do nich emisja gazów cieplarnianych, w której znaczny udział ma rolnictwo, głównie sektor produkcji zwierzęcej. W Unii Europejskiej rolnictwo polskie jest czwartym co do wielkości emitentem metanu i tlenku azotu z produkcji rolniczej, z udziałem 7,8%. W artykule dokonano oceny potencjalnej redukcji emisji gazów cieplarnianych w Polsce dzięki produkcji biogazu na bazie fermentacji beztlenowej nawozów naturalnych (obornik, gnojówka, gnojowica), przetworzonego następnie na energię elektryczną. Możliwość produkcji biogazu została oszacowana dla populacji 731 tys. gospodarstw ze zwierzętami z wykorzystaniem danych z próby FADN, co stanowi około 97% sektora produkcji zwierzęcej w Polsce. Potencjalne zmniejszenie emisji metanu zostało obliczone jako ekwiwalent CO2. Szacunek produkcji biogazu rolniczego sporządzono dla trzech scenariuszy: • hipotetycznego, zakładając wykorzystanie nawozów naturalnych od wszystkich zwierząt gospodarskich w Polsce, • teoretycznie wykonalnego – zakładającego, że minimalna skala produkcji zwierzęcej dla inwestycji w produkcję biogazu w gospodarstwie rolniczym przekracza 30 dużych sztuk przeliczeniowych zwierząt, • realistycznego – zakładającego, że jedynie połowa gospodarstw posiadających co najmniej 30 dużych sztuk przeliczeniowych podejmie produkcję biogazu. Według sporządzonych szacunków wykorzystanie nawozów naturalnych do produkcji energii zmniejszyłoby emisję gazów cieplarnianych z rolnictwa o 17,4% w przypadku scenariusza hipotetycznego, o 5% w scenariuszu teoretycznie wykonalnym oraz o około 2,5% w scenariuszu realistycznym (odpowiednio o 1,54%, 0,45; oraz 0,22 całkowitej emisji z różnych źródeł w skali kraju). Zmniejszenie emisji GHG nastąpiłoby z tytułu redukcji emisji metanu poprzez wyeliminowanie składowania nawozów naturalnych, a także ze względu na zwiększony udział "czystej energii" w całkowitym zużyciu energii. Pozwoliłby to zatem na niższe zużycie paliw kopalnych (np. węgla) w konwencjonalnych elektrowniach. W obecnej sytuacji rynkowej w Polsce, głównie wobec relatywnie niskich cen energii elektrycznej, produkcja energii elektrycznej z biogazowni rolniczych nie jest opłacalna ekonomicznie bez subsydiów. Niewystarczające wsparcie dla produkcji biogazu wskazuje, że korzyści z produkcji energii z nawozów naturalnych są niedoszacowane co dotyczy zwłaszcza redukcji emisji gazów cieplarnianych. Produkcja biogazu rolniczego ułatwiałby osiągnięcie celów strategii energetycznej UE i uczyniłaby sektor rolny bardziej zrównoważonym.
Źródło:
Rocznik Ochrona Środowiska; 2018, Tom 20, cz. 1; 662-680
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ sposobu prowadzenia fermentacji osadów ściekowych na produkcję biogazu
Influence of Different Digestion of Sewage Sludge on Biogas Production
Autorzy:
Dąbrowska, L.
Powiązania:
https://bibliotekanauki.pl/articles/1818635.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
osady ściekowe
hydroliza termofilowa
fermentacja
biogas
sewage sludge
digestion
thermophilic hydrolysis
Opis:
The aim of this study was to determine the influence of different processes of biochemical stabilization of sewage sludge on the following: biogas production, decomposition of organic matter, transfer of heavy metal ions to the liquid phase of sludge. The stabilization processes of interest in this work were: methane thermophilic digestion (55°C), mesophilic digestion (37°C), mesophilic digestion of thermophilically hydrolyzed sludge. To characterize biogas production in bioreactors, modified Gompertz equation was used. Higher biogas yields were obtained during thermophilic digestion, compared to the yields obtained under mesophilic conditions – 1.01 and 0.91 dm-3 from 1 g of the removed dry organic matter of sludge, respectively. Mesophilic digestion of thermophilically hydrolyzed sludge provided the highest biogas production, approximately 1.15 dm-3 from 1 g of the removed dried organic matter of sludge. A comparable degree of organic matter degradation was observed for all digestion processes, 35–41%. CH4 content in biogas during sludge mesophilic digestion, excluding 1st day, amounted to 59–64%, while during thermophilic digestion – 57–62%. Higher value of biogas production velocity coefficient while intensive growth phase of mixed microbes population (1.11 dm-3/d), during preliminary hydrolyzed sludge stabilization, in comparison to non-hydrolyzed sludge (0.87 dm-3/d), indicates the possibility of obtaining higher biogas production. Therefore it would be more beneficial to conduct mesophilic digestion of sludge which was preliminarily hydrolyzed at temperature of 55°C. The application of thermophilic digestion did not significantly influence the release of heavy metal ions to the stabilized sludge liquid. The concentration of zinc in the liquid was below 0.8 mg/ dm-3 during digestion. The concentration of the other metals was below 0.2 mg/ dm-3 for all digestion processes.
Źródło:
Rocznik Ochrona Środowiska; 2015, Tom 17, cz. 2; 943-957
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An efficiency of H2S removal from biogas via physicochemical and biological methods – a case study
Efektywność usuwania H2S z biogazu metodą fizykochemiczną i biologiczną
Autorzy:
Zdeb, M.
Powiązania:
https://bibliotekanauki.pl/articles/1818644.pdf
Data publikacji:
2013
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
usuwanie H2S
biogaz
hydrogen sulfide
sustainable development
biofiltration
recovery
strategy
Opis:
Celem pracy było porównanie dwóch instalacji w aspekcie oceny ich efektywności w usuwaniu siarkowodoru z biogazu powstałego na skutek fermentacji osadów ściekowych w oczyszczalni ścieków „Hajdów” w Lublinie. W pracy zwrócono uwagę na coraz większe zainteresowanie odnawialnymi źródłami energii, użycie których powoduje zmniejszenie zużywania paliw kopalnianych. Stosowanie źródeł odnawialnych nie powoduje zanieczyszczenia atmosfery ditlenkiem węgla, emitowanym wskutek procesów spalania. Podczas beztlenowego rozkładu osadów ściekowych powstaje biogaz, czyli mieszanina głównie metanu, ditlenku węgla oraz gazów śladowych. Jednym z mikrozanieczyszczeń występującym w biogazie jest siarkowodór (H2S). Siarkowodór jest gazem bezbarwnym i palnym, bardzo toksycznym i niebezpiecznym dla organizmów żywych. Usuwanie siarkowodoru z biogazu prowadzone jest głównie ze względów zdrowotnych, ale zapobiega także korozji materiałów i zanieczyszczeniu atmosfery oraz wpływa na wzrost wartości kalorycznej biogazu. Wiele jest sposobów prowadzenia odsiarczania. O wyborze procesu decydują głównie skład gazu, jego temperatura oraz ciśnienie. Do usuwania siarkowodoru stosowane są metody fizyczne, chemiczne i biologiczne. Wadą metod fizycznych, chemicznych i biochemicznych są wysokie koszty inwestycyjne i eksploatacyjne, wysokie koszty niezbędnych środków chemicznych oraz problemy z zagospodarowaniem odpadów. Najbardziej atrakcyjnymi wydają się być metody biologiczne, które charakteryzują się niskimi nakładami kapitałowymi oraz brakiem negatywnego wpływu na środowisko. Mechaniczno-biologiczna oczyszczalnia ścieków komunalnych „Hajdów” w Lublinie charakteryzuje się średnim dobowym przepływem ścieków na poziomie około 60000 m3/d. Powstaje tam 100 ton mechanicznie odwodnionego osadu dziennie. Wynikiem jego beztlenowego rozkładu jest powstający biogaz, wymagający odsiarczenia. W pracy porównano skuteczności usuwania siarkowodoru z biogazu na złożu rudy darniowej oraz w biologicznej stacji odsiarczania firmy AAT (Abwasser und Abfalltechnik GmbH). Biologiczna stacja odsiarczania zastąpiła rudę darniowa, którą usunięto w czerwcu 2008 r. ze względu na wysokie koszty jej zakupu oraz duże ilości odpadów powstających przy jej wymianie. Dane dotyczące efektywności usuwania H2S z biogazu na rudzie darniowej udostępnione zostały przez administratora oczyszczalni "Hajdów". Na skutek reakcji siarkowodoru ze związkami żelaza na rudzie darniowej wytrącały się siarczki żelaza. Na skutek tego, konieczne było częste wymienianie rudy, czego wynikiem były wysokie koszty eksploatacyjne i problem z zagospodarowaniem odpadów. Dane dotyczące skuteczności odsiarczania biogazu w odsiarczalni biologicznej zebrano z okresu ośmiu miesięcy pomiarów. Biologiczna stacja odsiarczania składa się z wysokiego zbiornika wypełnionego plastikowymi pierścieniami, stanowiącymi bazę dla rozwoju mikroorganizmów utleniających siarkę. Skuteczności usuwania siarkowodoru z biogazu wyliczano z różnicy jego stężenia przed wejściem na stację odsiarczania i po wyjściu ze stacji. Stwierdzono, że obie metody (fizykochemiczna i biologiczna) są skuteczne w odsiarczaniu biogazu. Średnia skuteczność usuwania siarkowodoru z biogazu na rudzie darniowej wyniosła 82.5%, podczas gdy w biologicznej stacji odsiarczania: 98.6%. W aktualnie pracującej stacji odsiarczania skuteczność usuwania H2S była wyższa o 16% w stosunku do skuteczności odsiarczania na rudzie darniowej. W okresie ośmiomiesięcznych pomiarów prowadzonych w biologicznej stacji odsiarczania nie stwierdzono wpływu pH i temperatury na skuteczność usuwania siarkowodoru z biogazu.
Źródło:
Rocznik Ochrona Środowiska; 2013, Tom 15, cz. 1; 551-563
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowe rozwiązania w zakresie pozyskiwania biogazu według technologii MT-ENERGIE
New solution in biogas production according to MT-ENERGIE technology
Autorzy:
Szymański, K.
Powiązania:
https://bibliotekanauki.pl/articles/1819626.pdf
Data publikacji:
2010
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogaz
źródła energii
technologia MT-ENERGIE
biogas
energy sources
technology MT-ENERGIE
Opis:
Kryzys energetyczny, z którym boryka się cały świat, stanowi również poważne zagrożenie dla Polski, która, podobnie jak pozostałe kraje Unii Europejskiej, zmuszona jest do poszukiwania nowych źródeł energii, które będą przyjazne dla środowiska a koszty pozyskiwania z nich energii będą niższe od dotychczasowych [15, 18, 25]. Za taką uważa się produkcję energii odnawialnej otrzymywanej z biomasy. Całościowe zasoby tego surowca w Polsce nie są jeszcze dokładnie oszacowane. Szacunki takie wykonali jedynie nieliczni prywatni inwestorzy, w posiadaniu których znajduje się duży areał gruntów przydatnych do produkcji biomasy. Wobec powyższego istnieją poważne przesłanki do budowy instalacji produkujących biogaz, jako nośnika ekologicznej energii.
The energy crisis, which is facing the whole world, is also a serious threat to Poland, which, like other European Union countries, is forced to seek new sources of energy, which will be environmentally friendly and costs of obtaining energy from them are lower than current. Production of renewable energy obtained from biomass is considered to be one of those. Paper presents possibilities of biogas production from maize and from municipal sewage sludge. This technology has been implemented in Germany under the name MT-ENERGIE Ž. The result of the process is biogas with high methane content and a valuable organic fertilizer. Paper also contains an analysis of kinetic of biodégradation processes of organic substances contained in the feedstock and presents technological parameters determining the process of transformation of substrates. This technology carries elements of innovation and can be implemented without major objections in the area of Pomerania in Poland, where production of energy plants takes place and there is unlimited access to municipal sewage sludge. Production of electricity and heat from biogas in Poland represents a negligible share of global energy balance. In Poland, according to data from the Ministry of Economy, on 31 December 2007 there were only 87 biogas installations with a total installed capacity of 45 MWe. Biogas plants total production was 162 GWh of electricity. This result cannot be considered satisfactory. The demand for this type of energy is much greater, imposed by EU law. The energy generated by such type of installations will undoubtedly meet the criteria for renewable energy, will contribute to the fulfilment by Poland commitments made by EU Member States regarding compulsory 20% share of such type of energy in the overall balance of energy demand from RES in the final energy balance and reduce C02 emissions. In addition, the use of sewage sludge from municipal sewage treatment plants as a raw material and energetic plants (maize) will significantly contribute to the substantial elimination of discharges of nitrogen and phosphorus to the Baltic Sea.
Źródło:
Rocznik Ochrona Środowiska; 2010, Tom 12; 249-262
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ temperatury na mikrobiologiczne usuwanie siarkowodoru z biogazu
An influence of temperature on microbial removal of hydrogen sulphide from biogas
Autorzy:
Zdeb, M.
Pawłowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1819720.pdf
Data publikacji:
2009
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
siarkowodór
biogaz
temperatura
usuwanie mikrobiologiczne
hydrogen sulphide
biogas
temperature
microbiological removal of
Opis:
Siarkowodór (H2S) jest gazem bardzo toksycznym, bezbarwnym, palnym, o charakterystycznym zapachu zgniłych jaj. Jest bardzo niebezpieczny dla organizmów żywych. Już niskie stężenia siarkowodoru negatywnie wpływają na układ nerwowy, a stężenie wyższe od 600 ppm może wywołać śmierć. Związek ten wykazuje korozyjność w stosunku do betonu i stali. Ponadto, powstające w czasie spalania siarkowodoru tlenki siarki zanieczyszczają atmosferę [16, 17]. Siarkowodór powstaje zarówno w warunkach naturalnych, jak i antropogennych. Procesy naturalne to redukcja siarczanów i organicznych związków zawierających siarkę w naturalnych ekosystemach lądowych i wodnych pozbawionych dostępu tlenu. Siarkowodór pochodzący ze źródeł antropogennych powstajegłównie w oczyszczalniach ścieków, w procesie kompostowania i składowaniaodpadów, w przemyśle spożywczym i paliwowym [11]. Tworzy się on w trakciebeztlenowego rozkładu substancji organicznej i stanowi jeden ze składnikówbiogazu powstającego na składowiskach odpadów i w procesie oczyszczaniaścieków. Jego stężenie w biogazie może sięgać nawet 2% obj.
Hydrogen sulfide (H2S) is a very toxic and dangerous, especially to living organisms,gas. Its other disadvantages are habitual "rotten egg" odor, a corrosivity toconcrete and steel and a possibility to cause an atmosphere pollution with sulfur oxides,which are formed during a combustion of the biogas as a fuel. H2S removing (desulfurization)is required for reasons of safety, health, corrosion prevention and atmospherepollution minimalisation. Hydrogen sulfide removal can be conducted via physical,chemical and biological methods. The main disadvantages of physical and chemicalprocesses are high operating costs, chemicals prices and problems with chemical wastedisposal. Biological processes seem to be the most attractive methods for H2S removingfrom contaminated gases, because of their low required capitals and no significant negativeinfluence on atmosphere. The most popular biological methods of gases purificationare biofiltration, bioscrubbing and biotrickling filtration. Biofiltration is a method,which is used especially for odours elimination. There are many factors influencing the biofiltration. One of them is temperature.The influence of temperature on H2S biofiltration process was examined in the paper. The examination was carried out in the organic base POKON. The organic base is a popular artificial substrate for plant cultivation, accessible in a trade. POKON was taken to the experiment without special preparing. Gaseous hydrogen sulfide was produced from concentrated liquid H2SO4 and sodium sulfide in Kipp's apparatus. The substrate samples (in three repetitions) were incubated within 2 weeks in two temperatures: 6 and 28 °C, before proper experiment was started. A gaseous hydrogen sulfide was introduced to the headspaces using a syringe till the concentration of H2S reached the values about 48% v/v. The 150 µl headspace gas samples were then taken from the vials by gas tight syringe through the rubber plugs and analyzed chromatographically (GC Shimadzu 14B). Changes in H2S concentrations, dependent on time, were the basis for the H2S removal rate calculation. Results of a laboratory research on hydrogen sulfide biofiltration using the organic substrate POKON in two temperatures: 6 and 28°C, were presented in the paper. The initial concentration of H2S was up to 48% v/v. The maximum value of hydrogen sulfide removal rate noticed at the temperature of 28°C was 0.19 cm3 g-1 ww min-1, while the highest value at the temperature of 6°C was 0.13 cm3 g-1 ww min-1, and was 30% lower.
Źródło:
Rocznik Ochrona Środowiska; 2009, Tom 11; 1235-1243
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ko-fermentacja pomiotu kurzego
Co-fermentation of Chicken Manure
Autorzy:
Sadecka, Z.
Suchowska-Kisielewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/1817959.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
pomiot kurzy
ko-fermentacja
C/N
biogaz
chicken manure
co-fermentation
C/N ratio
biogas
Opis:
Obok powszechnie stosowanej fermentacji metanowej osadów ściekowych, coraz większego znaczenia nabierają metody biologicznego, beztlenowego przetworzenia wielu rodzajów odpadów organicznych, zarówno stałych jak i ciekłych. O efektywności procesu oraz o ilości produkowanego biogazu decyduje charakter substratu i jego podatność na rozkład beztlenowy. Podatność substratów organicznych na biodegradację ocenia się na podstawie ilorazu C/N, który powinien dla procesu fermentacji metanowej mieścić się w zakresie od 20 do 30:1. Optymalizację składu substratów, a w szczególności: zawartości suchej masy, suchej masy organicznej, ilorazu C/N czy też stężenia inhibitorów można uzyskać stosując ko-fermentację, czyli wspólną fermentację dwóch lub więcej składników połączonych w jednorodną mieszaninę. Najczęściej spotyka się rozwiązanie, gdy jeden z substratów jest w przeważającej ilości (>50%). W miarę prowadzonych doświadczeń w skali półtechnicznej czy też technicznej zwiększa się spectrum wykorzystywanych ko-substratów. Proces ko-fermentacji wymaga wprowadzenia bilansowania składu substratów i ich wstępnego przygotowania. Jednym z substratów do biogazowni rolniczych może być pomiot kurzy. Wykorzystanie pomiotu stwarza jednak problemy eksploatacyjne. Związane jest to przede wszystkim z wysokimi stężeniami azotu amonowego oraz niekorzystnym ilorazem węgla organicznego do azotu w granicach od 2 do 14:1. Prawidłowo przebiegająca fermentacja metanowa pomiotu kurzego wymaga, więc zbilansowania ilorazu C/N przez wprowadzanie odpowiedniej ilości dodatkowych ko-substratów, bogatych w węgiel organiczny. Ko-substratami tymi mogą być: odpady szklarniowe (łęty pomidorów, ogórków), odpady rolnicze (obierki, wysłodki, melasa), biomasa w tym rośliny energetyczne (kiszonki kukurydzy, traw), frakcja organiczna odpadów komunalnych i osady ściekowe. Konkurencyjnym ko-substratem w przypadku małych biogazowni rolniczych może być podłoże popieczarkowe. W pracy przedstawiono wyniki badań dotyczące przebiegu procesu fermentacji pomiotu kurzego wraz z różnymi ko-substratami. Głównym celem badań było ustalenie optymalnych udziałów ko-substratów do procesu fermentacji w celu uzyskania wysokiej produkcji metanu (BMP). Głównym substratem był pomiot kurzy, a jako ko-substraty wykorzystywano: podłoże pieczarek, kiszonkę kukurydzy, słomę, trawę oraz łęty pomidorów. Udział ko-substratów we wsadzie do fermentacji pomiotu kurzego ustalano w oparciu o iloraz C/N. Substraty rozdrabniano do wymiarów < 20mm. Skład fizyczno-chemiczny oceniano na podstawie następujących parametrów: zawartość suchej masy, suchej masy organicznej, ChZT, pH, stężenia azotu Kjeldahla, azotu amonowego i fosforu. Podatność tych substratów na biodegradację beztlenową oceniano na podstawie ilorazu C/N oraz w teście BMP. Badania procesu beztlenowego rozkładu z produkcją biogazu prowadzono w reaktorach nie przepływowych o obj. 2,5 d3 w czasie 21-30 dób. Potencjał biogazowy określono dla różnego procentowego udziału pomiotu kurzego i ko-substratów. W badaniach testowano mieszaniny: pomiot kurzy + kiszonka kukurydzy, pomiot kurzy + łęty pomidorów, pomiot kurzy + słoma, pomiot kurzy + podłoże pieczarek. Wyznaczone wartości C/N dla substratów wynosiły od 12 do 169. Do zakresu optymalnego dla procesu fermentacji zbliżony był tylko iloraz C/N = 31 wyznaczony dla łęt pomidorów. Pomiot kurzy charakteryzował się wartością tego ilorazu na poziomie 12. Wyniki uzyskane dla pomiotu, trawy, kiszonki kukurydzy dobrze korespondują z wartościami C/N podawanymi w literaturze. Dla słomy stosowanej w badaniach uzyskano iloraz C/N=169 i odbiegał on od zakresu 80-100:1 podawanego w literaturze. Aby skorygować wartość ilorazu C/N do substratu podstawowego (pomiot kurzy) dodawano w różnych proporcjach inne substraty. W mieszaninach pomiot kurzy stanowił od 20 do 90%. Dla mieszaniny pomiotu kurzego z kiszonką kukurydzy uzyskano ilorazy C/N w zakresie 13-38. Iloraz C/N od 20 do 30 uzyskano dla mieszanin: 40% pomiot kurzy+ 60% kiszonka kukurydzy oraz 60% pomiot kurzy+40% kiszonka kukurydzy. Dobrym ko-substratem do pomiotu kurzego okazały się łęty pomidorów. Dla udziału łęt od 60 do 90% wartości C/N mieszaniny oscylowały w zakresie od 20 do 27. Najwyższą produkcję metanu na poziomie 320 d3/kg s.m. uzyskano dla kiszonki kukurydzy oraz dla trawy rzędu 237 d3/kg s.m. Wyniki badań wykazały, że kiszonka kukurydzy i łęty pomidorów są dobrymi ko-substratami do procesu fermentacji pomiotu kurzego. Mieszanina składająca się z 60% pomiotu i 40% kiszonki kukurydzy charakteryzowała się największą produkcją metanu. Produkcję metanu rzędu >200 d3/kg s.m. uzyskano również dla mieszanin: 60% pomiotu i 40% łęt pomidorów oraz 20% pomiot kurzy i 80% trawa. W przypadku dwóch ostatnich mieszanin wartości ilorazu C/N były < 20 i wynosiły kolejno 16 i 15. Dodatek 30 i 40% kiszonki kukurydzy powodował wzrost produkcji biogazu w stosunku do ilości produkowanej z pomiotu kurzego kolejno o: 25 i 35%. Porównując produkcję metanu z tych mieszanin odnotowano spadek tej produkcji w porównaniu do produkcji uzyskiwanej z samej kiszonki. Z mieszaniny pomiotu z łętami pomidorów z zawartością 40 i 60% pomiotu uzyskano większą produkcję metanu w porównaniu do produkcji uzyskanej dla samego pomiotu i samych łęt. Dodatek od 40 do 80% łęt do pomiotu powodował wzrost wartości ilorazu C/N mieszaniny, co nie wpłynęło na zwiększenie produkcji metanu. Największą produkcję metanu uzyskano w procesie ko-fermentacji mieszaniny: 60% pomiotu i 40% łęt pomidorów przy C/N = 16. Wyniki badań wykazują, że zalecany w literaturze iloraz C/N w zakresie 20-30:1 nie jest jednoznacznym parametrem oceniających podatność substratów i ich mieszanin na rozkład beztlenowy oceniany na podstawie ilości produkowanego metanu (biogazu).
In addition to the commonly used methane fermentation of sewage sludge also organic wastes both solid and liquid they are increasingly being processed in anaerobic process. The effectiveness of the process and the amount of biogas produced depends on the type of substrate and its susceptibility to anaerobic digestion. The susceptibility of organic substrates to biodegradation is assessed on the basis of the ratio C/N, which for methane fermentation process should be in the range of from 20 to 30: 1. The optimization of the composition of substrates, in particular a dry matter content of organic dry matter, the ratio C/N or the concentration of inhibitor may be obtained using co-fermentation means fermentation of two or more ingredients combined in a homogeneous mixture. The most common is a solution where one of the substrates is proportion > 50%. As research on a pilot scale and technical scale increases spectrum used co-substrates. The process of co-fermentation requires a balancing of the composition of the feedstock and pretreatment. One of the substrates for biogas plants can be chicken manure. However, the use of manure causes operational problems. This is due to high levels of ammonia nitrogen and negative quotient of organic carbon to nitrogen in the range from 2 to 14: 1. Properly runs methane fermentation of chicken manure therefore requires balancing the ratio C/N by entering the appropriate number of additional co-substrates, rich in organic carbon. Co-substrates of these may be: greenhouse waste (haulm tomatoes, cucumbers), agricultural wastes (peels, pulp, molasses), biomass including energy crops (corn silage, grass), the organic fraction of municipal waste and sewage sludge. Competitive co-substrate in the case of small agricultural biogas plants can be ground mushrooms. The paper presents results of research on the process of fermentation chicken manure along with various co-substrates. The main aim of the study was to determine the optimal part of co-substrates for the fermentation process to obtain high production of methane gas (BMP). The main substrate was chicken manure, and as co-substrates were used: grant mushrooms, corn silage, straw, grass and haulm tomatoes. The share of the co-substrates in the feed to the poultry manure fermentation was determined based on the quotient of C / N. Substrates was shredded to a size <20 mm. The physicochemical composition was evaluated based on the following parameters: dry matter content, organic matter, COD, pH, concentration of Kjeldahl nitrogen, ammonia nitrogen and phosphorus. The susceptibility of these substrates on anaerobic biodegradation was evaluated based on the ratio C/N and BMP test. The study of the anaerobic decomposition of biogas production was carried out in the reactors with a volume 2.5 dm(3) at the time of 21-30 days. The potential of biogas specified for different percentages chicken manure and co-substrates. In the studies were tested a mixture of: chicken manure + corn silage, chicken manure + haulm tomatoes, chicken manure + straw, chicken manure + ground mushroom. A good co-substrate for chicken manure proved haulm tomatoes. For the portion haulms came from 60 to 90% of the C/N of the mixture fluctuated in the range of 20 to 27. The highest methane production at the level of 320 dm(3)/kg DM obtained for corn silage and grass for at the level of 237 dm(3)/kg DM. The results showed that maize silage and haulm tomatoes are good co-substrates for fermentation of chicken manure. A mixture consisting of 60% manure, and 40% corn silage characterized by the highest production of methane. Methane production at the level of >200 dm(3)/kg DM were also obtained for mixtures of 60% manure and 40% haulms came tomatoes and chicken manure 20% and 80% grass. For the last two mixtures, the ratio of C/N was <20 and were 16 and 15, respectively. The addition of 30 and 40% corn silage caused an increase the biogas production relative to the amount of poultry manure produced successively by 25 and 35%. Comparing the production of methane from these mixtures to produce the same corn silage recorded a decrease of these production. The addition of 30 and 40% corn silage caused an increase the biogas production relative to the amount of poultry manure produced successively by 25 and 35%. Comparing the production of methane from these mixtures to produce the same corn silage recorded a decrease production. With a mixture of manure with haulm tomatoes with the contents of 40 and 60% reported greater manure methane production compared to the production obtained for manure and haulm tomatoes. The addition of from 40 to 80% of the tomato haulm to manure caused an increase of the ratio C/N of the mixture, which did not affect the increase in methane production. The highest methane production achieved in the co-fermentation with a mixture of 60% manure, and 40% tomato haulm at C/N = 16. The test results show that recommended in the literature quotient C/N in the range of 20-30:1 is not a unique parameter for assessing the susceptibility of substrates and mixtures for anaerobic digestion.
Źródło:
Rocznik Ochrona Środowiska; 2016, Tom 18, cz. 1; 609-625
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative study of the performance of an internal combustion engine and its emission working on conventional fuel (Diesel) and alternative fuel (Bio-CNG)
Autorzy:
Ingawale, Shrikant M.
Bagi, J. S.
Nikam, L. S.
Powiązania:
https://bibliotekanauki.pl/articles/2106435.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
comparative study
biogas
bio-CNG
diesel
performance
efficiency
emission
analiza porównawcza
biogaz
CNG
wydajność
emisja
Opis:
Currently, the world is facing problems regarding environmental pollution due to the combustion of fossil fuels. Generally, the combustion of fossil fuels takes place in the Internal Combustion engine for power or electricity generation. The combustion of fossil fuels emits greenhouse gases that lead to the greenhouse effect. The main symptom of the greenhouse effect is increased earth surface temperature. Also, the resources of fossil fuels are depleting rapidly and can take thousands of years to reproduce, so the time has come to go for lesser polluting renewable fuels. In this research, Bio-CNG is considered as an alternative fuel to conventional fuel, i.e. Diesel. The performance test on four-stroke IC Engines working on Bio-CNG and Diesel fuel is conducted simultaneously. The performance parameters such as Brake Power, Indicated Power, Thermal Efficiencies, Mechanical, Volumetric efficiency for both fuels are compared. Along with the performance, the emission is also recorded and compared. The results have shown that Bio-CNG has slightly less performance ability for similar engines working on Diesel fuel. Yet, this study also shows that Bio-CNG possesses the ability to replace the conventional fuel with some engine and exhaust system modifications. The higher calorific value (47000 kJ/kg) and lower or negligible carbon emission make it the best sustainable fuel substitute to conventional fuel, i.e. Diesel.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 1; 67--76
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies