Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pełka, Marcin" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Ensemble Approach for Clustering of Interval-Valued Symbolic Data
Autorzy:
Pelka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/466089.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
Ensemble clustering
interval-valued symbolic data
Opis:
Ensemble approach has been applied with a success to regression and discrimination tasks [see for example Gatnar 2008]. Nevertheless, the idea of ensemble approach, that is combining (aggregating) the results of many base models, can be applied to cluster analysis of symbolic data. The aim of the article is to present suitable ensemble clustering based on symbolic data. The empirical part of the paper presents results simulation studies (based on artificial data sets with known cluster structure) of ensemble clustering based on co-occurrence matrix for symbolic interval-valued data, compared with single clustering method. The results are compared according to corrected Rand index.
Źródło:
Statistics in Transition new series; 2012, 13, 2; 335-342
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Comparison of Fuzzy Clustering Methods for Symbolic Interval-Valued Data
Porównanie metod klasyfikacji rozmytej dla danych symbolicznych interwałowych
Autorzy:
Pełka, Marcin
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1364881.pdf
Data publikacji:
2015-09-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
spectral clustering
fuzzy clustering
fuzzy partition
interval-valued data
symbolic data analysis
klasyfikacja spektralna
klasyfikacja rozmyta
dane symboliczne interwałowe
analiza danych symbolicznych
Opis:
Interval-valued data can find their practical applications in such situations as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. The primary objective of the presented paper is to compare three different methods of fuzzy clustering for interval-valued symbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering and fuzzy k-means clustering with fuzzy spectral clustering. Fuzzy spectral clustering combines both spectral and fuzzy approaches in order to obtain better results (in terms of Rand index for fuzzy clustering). The conducted simulation studies with artificial and real data sets confirm both higher usefulness and more stable results of fuzzy spectral clustering method, as compared to other existing fuzzy clustering methods for symbolic interval-valued data, when dealing with data featuring different cluster structures, noisy variables and/or outliers.
Dane symboliczne interwałowe mogą znaleźć zastosowanie w wielu sytuacjach – np. w przypadku notowań giełdowych, zmianach kursów walut, itp. Celem artykułu jest porównanie trzech metod klasyfikacji rozmytej dla danych symbolicznych interwałowych – tj. rozmytej klasyfikacji c-średnich, adaptacyjnej rozmytej klasyfikacji c-średnich oraz rozmytej klasyfikacji k-średnich z rozmytą klasyfikacją spektralną. Rozmyta klasyfikacja spektralna stanowi połączenie podejścia spektralnego oraz klasyfikacji rozmytej c-średnich, dzięki czemu możliwe jest otrzymanie lepszych rezultatów (w sensie indeksu Randa dla klasyfikacji rozmytych). Przeprowadzone badania symulacyjne wskazują, że rozmyta klasyfikacja spektralna dla danych symbolicznych pozwala na uzyskanie lepszych wyników niż inne rozmyte metody klasyfikacji dla tego typu danych jeżeli weźmiemy pod uwagę zbiory danych o różnej strukturze klas, która dodatkowo jest zniekształcana przez obserwacje odstające lub zmienne zakłócające.
Źródło:
Przegląd Statystyczny; 2015, 62, 3; 301-319
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pomiar i analiza preferencji wyrażonych z wykorzystaniem pakietu conjoint programu R
The evaluation and analysis of revealed preferences with application of R package conjoint
Autorzy:
Pełka, Marcin
Rybicka, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/422930.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
pomiar i analiza preferencji
conjoint analysis
program R
evaluation and analysis of preference
R software
Opis:
Conjoint analysis jest metodą statystyczną, w której preferencje empiryczne respondentów wobec różnych ofert (rzeczywistych lub hipotetycznych) są poddawane dekompozycji w celu określenia: funkcji użyteczności każdego atrybutu, względnego znaczenia każdego z nich, analizy udziałów w rynku oraz segmentacji konsumentów. Na rynku obecnie oferowane są różne oprogramowania komputerowe pozwalające na przeprowadzenie badań preferencji konsumentów z wykorzystanie metod conjoint analysis. W artykule przedstawiono pakiet conjoint programu R oraz opracowane pakiety i funkcje programu R, niezbędne w prowadzeniu empirycznych badań preferencji. Program R, ze względu na dostępność na zasadach licencji GPL, zdobywa coraz więcej zwo-lenników, zarówno wśród osób zajmujących się badaniami preferencji, jak i osób korzystają-cych z metod analizy wielowymiarowej. Natomiast pakiet conjoint jest odpowiedzią na fakt, że nie wszystkie kroki procedury conjoint analysis znalazły swe odzwierciedlenie w programie R. W szczególności dotyczy to oceny ważności atrybutów oraz symulacji udziałów w rynku na etapie analizy i interpretacji wyników. W artykule przedstawiono również wyniki badania preferencji konsumentów wina z wyko-rzystaniem pakietu conjoint, analizę udziałów w rynku wybranych profilów symulacyj-nych oraz segmentacje konsumentów wina.
Conjoint analysis is a statistical method in which consumer preferences are decomposed in order to evaluate: utility function for each attribute, importance of each attribute, market shares simulations and segmentation of consumers. There are many different computer programs that can be applied for conjoint analysis re-search. The paper presents conjoint package of R software which are useful to evaluate empiri-cal preferences. The R program is more and more popular and many researchers are applying it. The conjoint package of R software is a response to a fact, that not all steps of conjoint analysis were programmed in R. In particular it concerns evaluation of attributes' importance, market share simulations and interpretation of results. The article presents also results of the evaluation of wine consumers' preferences with ap-plication of conjoint package, market share simulations and segmentation of consumers.
Źródło:
Przegląd Statystyczny; 2012, 59, 3; 302-315
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies