Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "arm" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Estimation of orientation and position of the manipulator using the extended kalman filter based on measurements from the accelerometers
Autorzy:
Kobierska, Agnieszka
Rakowski, Piotr
Podsędkowski, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/950743.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
EKF
accelerometers
measuring arm
Opis:
Authors present the kinematic structure of measurement arm along with its construction for efficient estimation of orientation and position of the manipulator using extended Kalman filter. The major innovation of the arm is that it only uses accelerometers as gravity sensors for determining relative positions of the links. This article presents the problem of position estimation based on measurements with high noise and the use of the extended Kalman filter to limit the impact of noise on the measurement. Repeatability tests were performed using custom made test stand.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 2; 23-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The measurement of displacement with the use of MEMS sensors : accelerometer, gyroscope and magnetometer
Autorzy:
Kobierska, A.
Podsędkowski, L
Poryzała, P.
Rakowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/384501.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Kalman filter
MEMS sensors
measuring arm
Opis:
The paper presents the method of determining the global orientation of links of the measuring arm by gauging the angles of the links relative to the vector of the gravitational and magnetic field using inertial sensors. A method of using Kalman filter to average the results is presented as a test on two-links measuring arm equipped with accelerometers and magnetometers placed on each of the links and analysis of measurement results in terms of repeatability. There was demonstrated the ability of creating kinematic chain. Instead of determining the position of the final link on the basis of the measurement of angles in relation to the previous links from the end to the base of the arm, it is possible to define links global orientation by measuring angles of links in reference to the vectors of the gravity field and the magnetic field, in global coordinate system.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 2; 42-47
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling cognitive functionalities of prosthetic arm using conceptual spaces
Autorzy:
Ishwarya, M.S.
Aswani Kumar, Ch.
Powiązania:
https://bibliotekanauki.pl/articles/384415.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
cognition
conceptual spaces
concepts
information granules
prosthetic arm
Opis:
Conceptual space framework is used for representing knowledge in cognitive systems. In this paper, we have adapted conceptual space framework for prosthetic arm considering its cognitive abilities such as receiving signals, recognizing and decoding the signal and responding with the corresponding action in order to develop a conceptual space of the prosthetic arm. Cognitive functionalities such as learning, memorizing and distinguishing configurations of prosthetic arm are achieved via its conceptual space. To our knowledge, this work is the first attempt to adapt the conceptual spaces to model cognitive functionalities of prosthetic arm. Adding to this, we have made use of different notion of concept that reflects the topological structure in concepts. To model the actions of the prosthetic arm functionalities, we have made use of force patterns to represent action. Similarly, to model the distinguishing ability, we make use of the relationship between the attributes conveyed by adapted different notion of concept.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 4; 11-21
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Safe Reaction of a Robot Arm with Torque Sensing Ability on the External Disturbance and Impact: Implementation of a New Variable Impedance Control
Autorzy:
Tsetserukou, D.
Kajimoto, H.
Kawakami, N.
Tachi, S.
Powiązania:
https://bibliotekanauki.pl/articles/384960.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
human-robot interaction
anthropomorphic robot arm
variable impedance controller
Opis:
The paper focuses on control of a new anthropomorphic robot arm enabling the torque measurement in each joint to ensure safety while performing tasks of physical interaction with human and environment. A novel variable control strategy was elaborated to increase the robot functionality and to achieve human-like dynamics of interaction. The algorithm of impact control imparting reflex action ability to the robot arm was proposed. The experimental results showed successful recognition and realization of three different types of interaction: service task, co-operative task, and impact state.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2008, 2, 4; 31-37
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Manipulation and path planning for KUKA (LWR/ LBR 4+) robot in a simulated and real environment
Autorzy:
Jitendra, T. P.
Doss, A. S. A.
Ramon, J. A. C.
Powiązania:
https://bibliotekanauki.pl/articles/385098.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
ROS
Indigo
motion planning
moveIt simulation
OMPL
robotics
KUKA LWR robotic arm
Opis:
Robotics has accomplished its greatest triumph to date in the world of industrial manufacturing and academia. This work aims to perform path planning using a KUKA (LWR/ LBR 4+) robot platform as well as a simulator to grasp the object. This whole implementation will be carried out in a ROS environment with Ubuntu (Linux) as an operating platform. The KUKA (LWR/ LBR 4+) has 7 degrees of freedom with several joints and linkages. It uses KR C2 LR as the main hardware controller. The robot gets visual information of an object by Microsoft Kinnect RGB-D camera and carries out necessary actions to clasp the object using a shadow hand and Barrett hand. The simulation and manipulation of robot gantry is performed by using C++ and python as a programming language. The bilateral robot platform and main PC hub are linked together by using Ethernet cable. The obtained results from the current research are found to be satisfactory and can be proven beneficial for researcher as a reference.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 3; 15-21
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of anthropomorphic dual arm robot with distinct degrees of freedom for coordinated operations
Autorzy:
Abhaykrishna, K. M.
Parayil, Nidhi Homey
Reghunandan, Ibin Menon
Sudheerx, Sudheer A. P.
Powiązania:
https://bibliotekanauki.pl/articles/385000.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
dual arm robot
anthropomorphic ratio
distinct degrees of freedom
coordination
object detection
Opis:
Development of assistive robots for helping the disabled is a field of research that has gathered attention recently. According to surveys, about one billion people in the world population have some kind of disability. Dual arm robots are a suitable solution for helping people with mobility impairments. The current development in the field of dual-arm robots is focused mainly in the industrial field to carry out cyclic tasks. This includes activities such as pick and place, assembling parts and doing other industrial operations. Unlike human arms, these dual arm robots lack versatility in doing a wide variety of tasks with adequate coordination between the arms. Due to these constraints, industrial dual arm robots cannot be directly implemented for assisting the disabled. This paper focuses on designing a compact dual arm robot which closely mimics human arms to do coordinated tasks with lesser Degrees of Freedom (DoF). Therefore, the developed robot extends its capabilities from industrial applications to daily life activities. Closed loop control is used in actuating the proposed 9 DoF dual arm robot with distinct DoF. Target position is acquired using image processing. Hand to hand coordination in various operations such as pick and place, transferring objects, serving food, etc. has successfully experimented.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 4; 52-64
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kinematic Analysis of 6-DOF Arms for H20 Mobile Robots and Labware Manipulation for Transportation in Life Science Labs
Autorzy:
Ali, M. M.
Liu, H.
Stoll, N.
Thurow, K.
Powiązania:
https://bibliotekanauki.pl/articles/384603.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
kinematic analysis 6-DOF robotic arm
validation of kinematic solution
labware localization
labware manipulation
Kinect sensor
Opis:
This paper presents the kinematic analysis of the H20 humanoid mobile robot. The kinematic analysis for the robot arms is essential to achieve accurate grasping and placing tasks for object transportation. The H20 robot has dual arms with 6 revolute joints with 6-DOF. For each arm, the forward kinematics is derived and the closed-form solution for the inverse kinematic problem with different cases of singularities is found. A reverse decoupling mechanism method is used to solve the inverse kinematic problem analytically by viewing the arm kinematic chain in reverse order. The kinematics solution is validated using MATLAB with robotics toolbox. A decision method is used to determine the optimal solution within multiple solutions of inverse kinematic depending on the joints’ limits and minimum joints motion. The workspace analysis of the arm is found and simulated. Finally, a verification process was performed on the real H20 arms by applying blind and vision based labware manipulation strategies to achieve the transportation tasks in real life science laboratories.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2016, 10, 4; 40-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2D microgravity test-bed for the validation of space robot control algorithms
Autorzy:
Oleś, J.
Kindracki, J.
Rybus, T.
Mężyk, Ł.
Paszkiewicz, P.
Moczydłowski, R.
Barciński, T.
Seweryn, K.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/384755.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
space debris
Active Debris Removal
Kessler syndrome
microgravity simulator
space robot
robotic arm
manipulator
control algorithm
Opis:
The utilization of satellites equipped with robotic arms is one of the existing strategies for Active Debris Removal (ADR). Considering that the time intended for on-orbit capturing manoeuvres is strictly limited, any given space robot should possess a certain level of autonomy. This paper is about the control of on-orbit space robots and the testing of such objects in laboratory conditions. The Space Research Centre of the Polish Academy of Sciences (CBK PAN) possesses a planar air bearing microgravity simulator used for the testing of advanced control algorithms of space robots supported on air bearings. This paper presents recent upgrades to the testing facility. Firstly, the base of the space robot is now equipped with manoeuvre thrusters using compressed nitrogen and therefore allowing for position control of the entire system. Secondly, a signal from an external vision system, referencing the position and orientation of the robot’s parts is used by the control system for the closed loop control.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 2; 95-104
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on numerical solution for a robot arm problem
Autorzy:
Ponalagusamy, R.
Senthilkumar, S.
Powiązania:
https://bibliotekanauki.pl/articles/384690.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Runge-Kutta (RK) method
RK-Arithmetic mean
RK- Fifth order algorithm
RK-Sixth order algorithm
Differential Equations (ODE)
robot arm problem
Opis:
The aim of this article is focused on providing numerical solutions for a Robot arm problem using the Runge-Kutta sixth-order algorithm. The parameters involved in problem of a Robot control have also been discussed through RKsixth-order algorithm. The précised solution of the system of equations representing the arm model of a robot has been compared with the corresponding approximate solutions at different time intervals. Experimental results and comparison show the efficiency of the numerical integration algorithm based on the absolute error between the exact and approximate solutions. The stability polynomial for the test equation ( is a complex Number) using RK-Butcher algorithm obtained by Murugesan et. al. [Murugesan K., Sekar S., Murugesh V., Park J.Y., "Numerical solution of an Industrial Robot arm Control Problem using the RK-Butcher Algorithm", International Journal of Computer Applications in Technology, vol.19, no. 2, 2004, pp. 132-138] is not correct and the stability regions for RK-fourth order (RKAM) and RK-Butcher methods have been presented incorrectly. They have made a mistake in determining the range for real parts of (h is a step size) involved in the test equation for RKAM and RK-Butcher algorithms. In the present paper, a corrective measure has been taken to obtain the stability polynomial for the case of RK-Butcher algorithm, the ranges for the real part of and to present graphically the stability regions of the RKAM and the RK-Butcher methods. The stability polynomial and stability region of RK-Sixth order are also reported. Based on the numerical results it is observed that the error involved in the numerical solution obtained by RK-Sixth order is less in comparison with that obtained by the RK-Fifth order and RK-Fourth order respectively.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2009, 3, 3; 34-40
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integration of navigation, vision, and arm manipulation towards elevator operation for laboratory transportation system using mobile robots
Autorzy:
Abdulla, A. A.
Ali, M. M.
Stoll, N.
Thurow, K.
Powiązania:
https://bibliotekanauki.pl/articles/384579.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
mobile robot
multi-floor
elevator handler
floor estimation
labware transportation system
kinematic analysis
robotic arm control
object detection
localization
Intel Real sense F200 sensor
Opis:
In the automated environments, mobile robots play an important role to perform different tasks such as objects transportation and material handling. In this paper, a new method for a glassy elevator handling system based on H20 mobile robots is presented to connect distributed life science laboratories in multiple floors. Various labware and tube racks have to be transported to different workstations. Locating of elevator door, entry button detection, internal buttons recognition, robot arm manipulation, current floor estimation, and elevator door status checking are the main operations to realize a successful elevator handling system. The H20 mobile robot has dual arms where each arm consists of 6 revolute joints and a gripper. The gripper has two degrees of freedom. Different sensors have been employed with the robot to handle these operations such as Intel RealSense F200 vision sensor for entry and internal buttons detection with position estimation. A pressure sensor is used for current floor estimation inside the elevator. Also, an ultrasonic proximity distance sensor is utilized for checking the elevator door status. Different strategies including HSL color representation, adaptive binary threshold, optical character recognition, and FIR smoothing filter have been employed for the elevator operations. For pressing operation, a hand camera base and a new elevator finger model are designed. The elevator finger is resolved in a way to fit the arm gripper which is used also to manipulate the labware containers. The Kinematic solution is utilized for controlling the arms’ joints. A server/client socket architecture with TCP/IP command protocol is used for data exchange between Multi-Floor System and the H20 robot arms. Many experiments were conducted in life science laboratories to validate the developed systems. Experimental results prove an efficient performance with high success rate under different lightening condition.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 4; 34-50
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies