Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forcing" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Total Forcing Sets and Zero Forcing Sets in Trees
Autorzy:
Davila, Randy
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/31348333.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
forcing set
forcing number
total forcing set
total forcing number
Opis:
A dynamic coloring of the vertices of a graph $G$ starts with an initial subset $S$ of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set $S$ is called a forcing set of $G$ if, by iteratively applying the forcing process, every vertex in $G$ becomes colored. If the initial set $S$ has the added property that it induces a subgraph of $G$ without isolated vertices, then $S$ is called a total forcing set in $G$. The minimum cardinality of a total forcing set in $G$ is its total forcing number, denoted $F_t(G)$. We prove that if $T$ is a tree of order $n ≥ 3$ with maximum degree $Δ$ and with $n_1$ leaves, then $n_1≤F_t(T)≤1/Δ((Δ-1)n+1)$. In both lower and upper bounds, we characterize the infinite family of trees achieving equality. Further we show that $F_t(T) ≥ F (T) + 1$, and we characterize the extremal trees for which equality holds.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 733-754
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The forcing steiner number of a graph
Autorzy:
Santhakumaran, A.
John, J.
Powiązania:
https://bibliotekanauki.pl/articles/743843.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
Steiner number
forcing geodetic number
forcing Steiner number
Opis:
For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by fₛ(W), is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by fₛ(G), is fₛ(G) = min{fₛ(W)}, where the minimum is taken over all minimum Steiner sets W in G. Some general properties satisfied by this concept are studied. The forcing Steiner numbers of certain classes of graphs are determined. It is shown for every pair a, b of integers with 0 ≤ a < b, b ≥ 2, there exists a connected graph G such that fₛ(G) = a and s(G) = b.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 171-181
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the forcing geodetic and forcing steiner numbers of a graph
Autorzy:
Santhakumaran, A.
John, J.
Powiązania:
https://bibliotekanauki.pl/articles/743992.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
Steiner number
forcing geodetic number
forcing Steiner number
Opis:
For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by fₛ(W), is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by fₛ(G), is fₛ(G) = min{fₛ(W)}, where the minimum is taken over all minimum Steiner sets W in G. The geodetic number g(G) and the forcing geodetic number f(G) of a graph G are defined in [2]. It is proved in [6] that there is no relationship between the geodetic number and the Steiner number of a graph so that there is no relationship between the forcing geodetic number and the forcing Steiner number of a graph. We give realization results for various possibilities of these four parameters.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 4; 611-624
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Short Proof for a Lower Bound on the Zero Forcing Number
Autorzy:
Fürst, Maximilian
Rautenbach, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/32083733.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
zero forcing
girth
Moore bound
Opis:
We provide a short proof of a conjecture of Davila and Kenter concerning a lower bound on the zero forcing number Z(G) of a graph G. More specifically, we show that Z(G) ≥ (g − 2)(δ − 2) + 2 for every graph G of girth g at least 3 and minimum degree δ at least 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 355-360
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The forcing geodetic number of a graph
Autorzy:
Chartrand, Gary
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/744241.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic set
geodetic number
forcing geodetic number
Opis:
For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic number $f_G(S)$ of S is the minimum cardinality among the forcing subsets of S, and the forcing geodetic number f(G) of G is the minimum forcing geodetic number among all minimum geodetic sets of G. The forcing geodetic numbers of several classes of graphs are determined. For every graph G, f(G) ≤ g(G). It is shown that for all integers a, b with 0 ≤ a ≤ b, a connected graph G such that f(G) = a and g(G) = b exists if and only if (a,b) ∉ {(1,1),(2,2)}.
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 1; 45-58
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The connected forcing connected vertex detour number of a graph
Autorzy:
Santhakumaran, A.
Titus, P.
Powiązania:
https://bibliotekanauki.pl/articles/743939.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex detour number
connected vertex detour number
upper connected vertex detour number
forcing connected vertex detour number
connected forcing connected vertex detour number
Opis:
For any vertex x in a connected graph G of order p ≥ 2, a set S of vertices of V is an x-detour set of G if each vertex v in G lies on an x-y detour for some element y in S. A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdₓ(G). For a minimum connected x-detour set Sₓ of G, a subset T ⊆ Sₓ is called a connected x-forcing subset for Sₓ if the induced subgraph G[T] is connected and Sₓ is the unique minimum connected x-detour set containing T. A connected x-forcing subset for Sₓ of minimum cardinality is a minimum connected x-forcing subset of Sₓ. The connected forcing connected x-detour number of Sₓ, denoted by $cf_{cdx}(Sₓ)$, is the cardinality of a minimum connected x-forcing subset for Sₓ. The connected forcing connected x-detour number of G is $cf_{cdx}(G) = mincf_{cdx}(Sₓ)$, where the minimum is taken over all minimum connected x-detour sets Sₓ in G. Certain general properties satisfied by connected x-forcing sets are studied. The connected forcing connected vertex detour numbers of some standard graphs are determined. It is shown that for positive integers a, b, c and d with 2 ≤ a < b ≤ c ≤ d, there exists a connected graph G such that the forcing connected x-detour number is a, connected forcing connected x-detour number is b, connected x-detour number is c and upper connected x-detour number is d, where x is a vertex of G.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 3; 461-473
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Maximum Resonant Set of Polyomino Graphs
Autorzy:
Zhang, Heping
Zhou, Xiangqian
Powiązania:
https://bibliotekanauki.pl/articles/31340955.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
polyomino graph
dimer problem
perfect matching
resonant set
forcing number
alternating set
Opis:
A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square) with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 323-337
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies