- Tytuł:
- Factorizations of properties of graphs
- Autorzy:
-
Broere, Izak
Teboho Moagi, Samuel
Mihók, Peter
Vasky, Roman - Powiązania:
- https://bibliotekanauki.pl/articles/744148.pdf
- Data publikacji:
- 1999
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
factorization
property of graphs
irreducible property
reducible property
lattice of properties of graphs - Opis:
- A property of graphs is any isomorphism closed class of simple graphs. For given properties of graphs ₁,₂,...,ₙ a vertex (₁, ₂, ...,ₙ)-partition of a graph G is a partition {V₁,V₂,...,Vₙ} of V(G) such that for each i = 1,2,...,n the induced subgraph $G[V_i]$ has property $_i$. The class of all graphs having a vertex (₁, ₂, ...,ₙ)-partition is denoted by ₁∘₂∘...∘ₙ. A property is said to be reducible with respect to a lattice of properties of graphs if there are n ≥ 2 properties ₁,₂,...,ₙ ∈ such that = ₁∘₂∘...∘ₙ; otherwise is irreducible in . We study the structure of different lattices of properties of graphs and we prove that in these lattices every reducible property of graphs has a finite factorization into irreducible properties.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 1999, 19, 2; 167-174
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki