Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Neural Networks" wg kryterium: Temat


Tytuł:
Searching for optimal size neural networks in Assembler Encoding
Autorzy:
Praczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/970178.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
evolutionary neural networks
Opis:
Assembler Encoding represents a neural network in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix, which maintains all the information necessary to construct a network. To generate the programs and, in consequence, neural networks, evolutionary techniques are used. One of the problems in Assembler Encoding is to determine an optimal number of neurons in a neural network. To deal with this problem a current version of Assembler Encoding uses a solution that is time consuming and hence rather impractical. The paper proposes four other solutions to the problem mentioned. To test them, experiments in a predator-prey problem were carried out. The results of the experiments are included at the end of the paper.
Źródło:
Control and Cybernetics; 2010, 39, 4; 1193-1215
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Assembler Encoding to build neuro-controllers for a team of autonomous underwater vehicles
Autorzy:
Praczyk, T.
Szymak, P.
Powiązania:
https://bibliotekanauki.pl/articles/206308.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
evolutionary neural networks
autonomous underwater vehicles
Opis:
The paper compares a neuro-evolutionary metod called Assembler Encoding with two other methods from the area of neuro–evolution. As a testbed for the methods a variant of the predator–prey problem with Autonomous Underwater Vehicles (AUV) operating in an environment with the sea current was used. In the experiments, the task of vehicles–predators controlled with evolutionary neural networks was to capture a vehicle–prey behaving according to a simple deterministic strategy. All the experiments were carried out in simulation, and in order to simplify calculations in the two–dimensional environment – AUVs moved on a horizontal surface under the water.
Źródło:
Control and Cybernetics; 2013, 42, 1; 267-286
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Consumer-oriented heat consumption prediction
Autorzy:
Grzenda, M.
Powiązania:
https://bibliotekanauki.pl/articles/206248.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
district heating systems
demand prediction
neural networks
Opis:
The advent of modern low-cost monitoring and wireless transmission systems results in unprecedented availability of measurement data potentially available in near real-time mode. In particular, some of the remote meter reading systems can be used to collect data on an hourly or even sub-hourly basis. This allows the utility companies to model and predict consumer behaviour more precisely than before. In this study, the way the monitoring data can be used to model heat consumption at individual premises supplied with heat by a district heating system, is proposed. The proposed algorithm is based on customer partitioning used to devise a number of group models serving the needs of consumers sharing similar consumption profiles. Self-organising maps are used to group averaged long-term time series, while the short-term time series provide a basis for group prediction models. Particular attention has been paid to a wider hydraulic modelling perspective, as the application of the proposed method to provide assumed demand for hydraulic model of a district heating system is envisaged. The approach has been validated using a real data set. Results show that in spite of a limited number of monitored consumers, group prediction models, constructed using the algorithm proposed in this study, can significantly reduce demand prediction error.
Źródło:
Control and Cybernetics; 2012, 41, 1; 213-240
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary neural-networks based optimisation for short-term load forecasting
Autorzy:
Grzenda, M.
Macukow, B.
Powiązania:
https://bibliotekanauki.pl/articles/206850.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja
programowanie ewolucyjne
sieć neuronowa
evolutionary programming
neural networks
optimisation
Opis:
The purpose of short-term load forecasting is to optimise the power supply volume in short time horizon. There is no straightforward mapping rule between the type of time period and the resulting power consumption. Still, it is inevitable for the overall efficiency of the power system to rely on a good prediction model. Our paper illustrates a novel approach based on evolutionary programming. Feedforward networks are being evolved by the ECoMLP method in order to properly solve the optimisation problem, defined as minimisation of the prediction error. All the results have been obtained using the data from the Polish Power System. The data used for the training and tests has been chosen so as to reflect both short-time and long-time dependencies between time period category and load of the system. The primary feature of the described method is a novel self-adaptive procedure that is a part of a sophisticated design algorithm serving to select both network architecture and weight connections. Due to the application of this procedure, no time consuming tests are required to train and retrain neural prediction models. Therefore, the method makes it possible to construct and maintain prediction models for load forecasting without expert knowledge about neural networks.
Źródło:
Control and Cybernetics; 2002, 31, 2; 371-382
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of urban MV multi-loop electric power distribution networks structure using Artificial Intelligence methods
Autorzy:
Parol, M.
Baczyński, D.
Brożek, J.
Powiązania:
https://bibliotekanauki.pl/articles/205678.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
electric power distribution networks
optimization of network structure
evolutionary algorithms
artificial neural networks
Opis:
Urban medium voltage (MV) electric power distribution networks are supplied with primary (HV/MV) substations. These networks supply secondary (MV/LV) transformer substations and are often built as closed structures - loop arrangements. The design problem of optimal urban MV distribution network structure consists of determining the number of primary substations, establishing the number of MV loops supplied with the primary substations, and assigning the secondary MV/LV transformer substations to the MV loops. The optimization task becomes especially complex when the number of the primary substations is greater than one. The minimum of total annual costs is sought. The total annual costs include: fixed (investment) costs, variable (operating) costs and supply-interruption costs. Typical constraints are also accounted for. The so defined optimization problem is a complicated mathematical problem in respect of computational effort. In order to resolve the mathematical model of the optimization problem, evolutionary algorithms and artificial neural networks have been used. Exemplary computational experiments have been executed on the model of urban MV multi-loop electric power distribution networks. The results from the evolutionary algorithm and the artificial neural network calculations have been compared.
Źródło:
Control and Cybernetics; 2012, 41, 3; 667-689
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A stability based neural networks controller design method
Autorzy:
Song, J.
Xu, X.
He, X.
Powiązania:
https://bibliotekanauki.pl/articles/206120.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
sieć neuronowa
stabilność
sterowanie nieliniowe
neural networks control
nonlinear control
sliding mode
stability
Opis:
The use of neural networks in control systems can be seen as a natural step in the evolution of control methodology to meet new challenges. Many attempts have been made to apply the neural networks to deal with non-linearities and uncertainties of the control systems. Research in neural network applications to control can be classified according to the major methods depending on structures of the control system, such as NN-based NON-linear System Identification, NN-based Supervised Control, NN-based Direct Control, NN-based Indirect Control, NN-based Adaptive Control, NN-based Self-learning Control, NN-based Fuzzy Control, and NN Variable Structure Control. All these control methods cannot, however, effectively guarantee system stability, i.e. none of these neural network controls, except for NN-based Variable Structure Control, is based on system stability. This also limits the application and development of the neural networks in control theory. The paper shows the effort to solve this difficulty and give a way for the design method of the stability based neural networks controller using Lyapunov second stability theorem. This kind of controller can not only guarantee system stability, but also fully compensate for the influence of system uncertainties and non-linearities.Simulation results also show the effectiveness of the controller.
Źródło:
Control and Cybernetics; 1998, 27, 1; 119-133
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent prediction of milling strategy using neural networks
Autorzy:
Klancnik, S.
Balic, J.
Cus, F.
Powiązania:
https://bibliotekanauki.pl/articles/971013.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
SOM neural networks
CAD/CAM system
feature extraction
milling strategy
CAD segmentation
STL model
Opis:
This paper presents the prediction of milling tool-path strategy using Artificial Neural Network (ANN), by taking the predefined technological objectives into account. In the presented case, the best possible surface quality of a machined surface was taken as the primary technological aim. This paper shows how feature extraction from a 3D CAD model, and classification using a self-organizing neural network, are done. The experimental results presented in this paper suggest that the prediction of milling strategy using the self-organizing neural network (SOM) is effective.
Źródło:
Control and Cybernetics; 2010, 39, 1; 9-24
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A survey of factors influencing MLP error surface
Autorzy:
Kordos, M.
Duch, W.
Powiązania:
https://bibliotekanauki.pl/articles/970445.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
sieć neuronowa
powierzchnia błędów
wizualizacja
trajektoria uczenia się
neural networks
MLP
error surface
visualization
learning trajectory
Opis:
Visualization of neural network error surfaces and learning trajectories helps to understand the influence of numerous factors on the neural learning process. This understanding can be used to improve training and design of MLP networks. The following topics are discussed using a few benchmark datasets for illustration: general error surface properties including local minima, plateaus and narrow funnels, their dependence on network structure, input data, transfer and error functions, consequences of weight initialization, and interesting directions in the weight space. The error surfaces are shown in 3-dimensional PCA-based projections. Finally a possibility of effective weight number reduction is discussed.
Źródło:
Control and Cybernetics; 2004, 33, 4; 611-631
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chaotic time series prediction with feed-forward and recurrent neural nets
Autorzy:
Mańdziuk, J.
Mikołajczak, R.
Powiązania:
https://bibliotekanauki.pl/articles/206741.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
odwzorowanie logistyczne
predykcja
sieć neuronowa
szereg czasowy chaotyczny
chaotic time series
logistic map
neural networks
prediction
Opis:
The results of experimental comparison between several neural architectures for short-term chaotic time series prediction problem are presented. Selected feed-forward architectures (Multi-layer Perceptrons) are compared with the most popular recurrent ones (Elman, extended Elman, and Jordan) on the basis prediction accuracy, training time requirements and stability. The application domain is logistic map series - the well known chaotic time series predition benchmark problem. Simulation results suggest that in terms of prediction accuracy feed-forward networks with two hidden layers are superior to other tested architectures. On the other hand feed-forward architectures are, in general, more demanding in terms of training time requirements. Results also indicate that with a careful choice of learning parameters all tested architectures tend to generate stable (repeatable) results.
Źródło:
Control and Cybernetics; 2002, 31, 2; 383-406
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exponential and chaotic neurodynamical tabu searches for quadratic assignment problems
Autorzy:
Hasegawa, M.
Ikeguchi, T.
Aihara, K.
Powiązania:
https://bibliotekanauki.pl/articles/206864.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
problem optymalizacji kombinatorycznej
sieć neuronowa
chaos
combinatorial optimization problems
neural networks
quadratic assignment problems
tabu search
Opis:
We propose a chaotic neurodynamical searching method for the Quadratic Assignment Problems (QAPs). First, we construct a neural network whose behavior is the same as that of the conventional tabu search. Using the dynamics of the tabu search neural network, we realize the exponential tabu search, whose tabu effect decreases exponentially with time, and we show the effectiveness of this type of exponential tabu search. Next, we extend this novel tabu search to a chaotic version. This chaotic method includes both effects of the chaotic dynamical search and the exponential tabu search, and exhibits better performance than the conventional and exponential tabu searches. Last, we propose an automatic parameter tuning method and show that the proposed method exhibits high performance even on large QAPs.
Źródło:
Control and Cybernetics; 2000, 29, 3; 773-788
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network models for combinatorial optimization : a survey of deterministic, stochastic and chaotic approaches
Autorzy:
Smith, K.
Potvin, J.
Kwok, T.
Powiązania:
https://bibliotekanauki.pl/articles/205943.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
chaos
odwzorowanie samoporządkujące
optymalizacja kombinatoryczna
sieć Hopfielda
sieć neuronowa
combinatorial optimization
deformable templates
Hopfield networks
neural networks
self-organizing maps
Opis:
This paper serves as a tutorial on the use of neural networks for solving combinatorial optimization problems. It reviews the two main classes of neural network models : the gradient-based neural networks such as the Hopfield network, and the deformable template approaches such as the elastic net method and self organizing maps. In each class, the original model is presented, its limitations discussed, and subsequent developments and extensions are reviewed. Particular emphasis is placed on stochastic and chaotic variations on the neural network models designed to improve the optimization performance. Finally, the performance of these neural network models is compared and discussed relative to other heuristic approaches.
Źródło:
Control and Cybernetics; 2002, 31, 2; 183-216
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligence in manufacturing systems: the pattern recognition perspective
Autorzy:
Zaremba, M. B.
Powiązania:
https://bibliotekanauki.pl/articles/971032.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
Intelligent Manufacturing Systems
pattern recognition
computational intelligence
neural networks
distributed systems
spatial filtering
feature selection
dimensionality reduction
Opis:
The field of Intelligent Manufacturing Systems (IMS) has been generally equated with the use of Artificial Intelligence and Computational Intelligence methods and techniques in the design and operation of manufacturing systems. Those methods and techniques are now applied in many different technological domains to deal with such pervasive problems as data imprecision and nonlinear system behavior. The focus in IMS is now shifting to a broader understanding of the intelligent behavior of manufacturing systems. The questions debated by researchers today relate more to what kind and what level of adaptability to instill in the structure and operation of a manufacturing system, with the discussions increasingly gravitating to the issue of system self-organization. This paper explores the changing face of IMS from the perspective of the pattern recognition domain. It presents design criteria for techniques that will allow us to implement manufacturing systems exhibiting adaptive and intelligent behaviour. Examples are given to show how incorporating pattern recognition capabilities can help us build more intelligence and self-organization into the manufacturing systems of the future.
Źródło:
Control and Cybernetics; 2010, 39, 1; 233-258
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/2183468.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
artificial neural networks
day-ahead market
dequantization with ANN
neural modeling
quantum inspired method
quantum computing
Polish Electricity Exchange
system quantization
Opis:
The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.
Źródło:
Control and Cybernetics; 2021, 50, 3; 383--399
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks for the N-Queens Problem : a review
Autorzy:
Mańdziuk, J.
Powiązania:
https://bibliotekanauki.pl/articles/205945.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja kombinatoryczna
problem n-hetmanów
sieć Hopfielda
sieć neuronowa
combinatorial optimization
Hopfield network
N-Queens Problem
neural networks
Opis:
Neural networks can be successfully applied to solving certain types of combinatorial optimization problems. In this paper several neural approaches to solving constrained optimization problems are presented and their properties discussed. The main goal of the paper is to present various improvements to the wellknown Hopfield models which are intensively used in combinatorial optimization domain. These improvements include deterministic modifications (binary Hopfield model with negative self-feedback connections and Maximum Neural Network model), stochastic modifications (Gaussian Machine), chaotic Hopfield-based models (Chaotic Neural Network and Transiently Chaotic Neural Network), hybrid approaches (Dual-mode Dynamic Neural Network and Harmony Theory approach) and finally modifications motivated by digital implementation feasibility (Strictly Digital Neural Network). All these models are compared based on a commonly used benchmark prohlem - the N-Queens Problem (NQP). Numerical results indicate that each of modified Hopfield models can be effectively used to solving the NQP. Coonvergence to solutions rate of these methods is very high - usually close to 100%. Experimental time requirements are generally low - polynomial in most casos. Some discussion of non-neural, heuristic approaches to solving the NQP is also presented in the paper.
Źródło:
Control and Cybernetics; 2002, 31, 2; 217-248
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trajectory tracking of a wheeled mobile robot with uncertainties and disturbances: proposed adaptive neural control
Autorzy:
Martins, N. A.
Alencar, M.
Lombardi, W. C.
Bertol, D. W.
Pieri, E. R.
Filho, H. F.
Powiązania:
https://bibliotekanauki.pl/articles/971045.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
wheeled mobile robot
trajectory tracking
kinematic control
variable structure control
dynamic control
sliding mode theory
neural networks
Lyapunov theory
Opis:
This paper analyses a trajectory tracking control problem for a wheeled mobile robot, Rusing integration of a kinematic neural controller (KNC) and a torque neural controller (TNC), in which both the kinematic and dynamic models contain uncertainties and disturbances. The proposed adaptive neural controller (PANC) is composed of the KNC and the TNC and is designed with use of a modeling technique of Gaussian radial basis function neural networks (RBFNNs). The KNC is a variable structure controller, based on the sliding mode theory and is applied to compensate for the disturbances of the wheeled mobile robot kinematics. The TNC is an inertia-based controller composed of a dynamic neural controller (DNC) and a robust neural compensator (RNC) applied to compensate for the wheeled mobile robot dynamics, bounded unknown disturbances, and neural network modeling errors. To minimize the problems found in practical implementations of the classical variable structure controllers (VSC) and sliding mode controllers (SMC), and to eliminate the chattering phenomenon, the nonlinear and continuous KNC and RNC of the TNC are applied in lieu of the discontinuous components of the control signals that are present in classical forms. Additionally, the PANC neither requires the knowledge of the wheeled mobile robot kinematics and dynamics nor the timeconsuming training process. Stability analysis, convergence of the tracking errors to zero, and the learning algorithms for the weights are guaranteed based on the Lyapunov method. Simulation results are provided to demonstrate the effectiveness of the proposed approach.
Źródło:
Control and Cybernetics; 2015, 44, 1; 47-98
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies