Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "związki kompleksowe Ru(III)" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Właściwości katalityczne i biomedyczne związków zawierających jony rutenu (II) oraz Rutenu (III)
Catalytic and biomedical properties of compound containing ruthenium (II) and ruthenium (III) ions
Autorzy:
Pobłocki, Kacper
Pawlak, Marta
Walczak, Juliusz
Drzeżdżon, Joanna
Jacewicz, Dagmara Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/27310039.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki kompleksowe Ru(II)
związki kompleksowe Ru(III)
właściwości biomedyczne
właściwości katalityczne
Ru(II) complex compounds
Ru(III) complex compounds
biomedical properties
catalytic properties
Opis:
Ruthenium complexes appear in scientific publications mainly as catalysts in the olefins metathesis process. In this review, we want to indicate the research niche regarding the use of ruthenium(II) and ruthenium(III) complexes in other catalytic processes, i.e. polymerization or epoxidation of olefins and depolymerization. We would like to combine the catalytic properties of ruthenium(II,III) complex compounds with their biomedical activity due to the growing problem of drug resistance (including antibiotic resistance). Scientists have been designing new metallopharmaceuticals exhibiting biological activity for several years, therefore this requires a critical review of the literature. The main goal of designing new metallodrugs is to create compounds with new or stronger biological properties compared to free ligands. Ruthenium compounds are considered potential substitutes for known drugs. In particular, Ru(II) and Ru(III) based complexes have reduced toxicity and can be tolerated in vivo. In addition, a wide spectrum of ruthenium oxidation states, a different mechanism of action and the kinetics of ligand substitution increase the advantage over coordination complex compounds based on platinum. In conclusion, in this review, we will focus on the latest reports from the literature on the catalytic properties and biomedical activity of ruthenium(II) and ruthenium(III) chemical compounds.
Źródło:
Wiadomości Chemiczne; 2023, 77, 5-6; 569--595
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Asymetryczne przeniesienie wodoru do ketonów katalizowane związkami Rutenu(II) i Rodu(III)
Asymmetric transfer hydrogenation of ketones catalyzed by Ruthenium(II) and Rhodium(III) complexes
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Studzińska, R.
Wróblewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/172550.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
transfer wodoru asymetryczny
związki kompleksowe Ru(II) i Rh(III)
chiralne ligandy
prochiralne związki karbonylowe
asymmetric transfer hydrogenation
Ru(II) and Rh(III) complexes
chiral ligands
prochiral carbonyl compounds
Opis:
Asymmetric hydrogen transfer (ATH) is one of the methods of stereoselective reduction of prochiral carbonyl compounds (Scheme 6). Complexes of the platinum group metals (Noyori catalysts) are the most common catalysts for AT H reactions. The specific structure of the Noyori catalyst allows to activate two hydrogen atoms. These atoms are transferred from donor to acceptor in the form of hydride ion and proton (Scheme 1). Depending on the used catalyst the transfer hydrogenation of ketons can proceed by direct and indirect transfer mechanism. The direct hydride transfer from a donor to an acceptor proceeds via a six-membered transition state (3) (Scheme 2). The indirect hydride transfer proceeds through the formation of an intermediate metal hydride. A monohydride (HLnMH) and or a dihydride (LnMH2) can be formed depending on the catalyst that is used (Scheme 3). In the monohydride route, the reduction proceeds in the inner sphere of the metal (four-membered transition state (4)) or in the outer sphere of the metal (six-membered transition state (5)) (Scheme 4). The proposed reduction of carbonyl compounds in the AT H reaction by Noyori catalysts uses the mechanism of the hydride ion and proton transfer from the donor to the catalyst and the formation of the monohydride. In the indirect transfer hydrogenation the hydride ion and proton are transferred from the monohydride to the acceptor (Scheme 5, 7). AT H reactions that lead to chiral alcohols are conducted in organic solvents or in water. Hydrogen donors most often used in organic solvent reactions are propan-2-ol or an azeotropic mixture of formic acid and triethylamine (Tab. 1, 6). Sodium formate is usually used as hydrogen donor in the reactions conducted in water. Yield and enantioselectivity of the reaction depend on many factors the most important of which are: the structure of a substrate, hydrogen donor and solvent that were used, the reaction time, substrate concentration, and the S/C ratio [2]. In the case of asymmetric reduction conducted in water the solvent pH is also of great importance [3, 7, 8]. An optimal pH range depends on the type of a catalyst [7, 8]. AT H reactions conducted in water are distinguished by a shorter reaction time and higher enantioselectivity than the reactions conducted in organic solvents. In addition, catalysts used in the AT H reactions are more stable in water allowing reuse of the catalyst without loss of its activity. This paper presented examples of the use of specific catalysts in asymmetric reactions of hydrogen transfer. In particular, I drew attention to the reactions running in the aquatic environment due to the above-mentioned advantages of this solvent. The authors focused specifically on bifunctional catalysts based on Ru(II) and Rh(III) on the account of wide usage of the catalysts of that type in AT H reactions in water and their good performance [8, 9, 15, 16, 17, 19, 20, 21, 22]. p-Cymene is the most common aromatic ligand in catalysts based on Ru(II) while in the case of catalysts with Rh(III) the most common is anionic pentamethylcyclopentadienyl ligand. In both cases the second most common ligands are diamines or amino alcohols (Scheme 8). There are better performance and enantioselectivity when diamines are used as ligands. Attempts to replace diamines and amino alcohols by Schiff bases (Scheme 13) in the catalysts containing Rh(III) proved poor results due to a very low enantioselectivity of conducted reactions (Tab. 7).
Źródło:
Wiadomości Chemiczne; 2012, 66, 3-4; 273-295
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies