Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zespół klasyfikatorów" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Person verification based on keystroke dynamics
Autorzy:
Doroz, R.
Porwik, P.
Safaverdi, H.
Powiązania:
https://bibliotekanauki.pl/articles/334042.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
keystroke dynamics
ensemble of classifiers
biometrics
dynamika pisania na klawiaturze
zespół klasyfikatorów
biometria
Opis:
This paper presents a new multilayer ensemble of classifiers for users verification who use computer keyboard. The special keyboard extracts the key pressure and latency between keyboard keys pressed during password entered. When user is typing password the system creates a pattern based on time and key pressure. For users verification group of classifiers have been proposed. It allows to obtain the higher accuracy level compared to alternative techniques. The efficiency of the proposed method has been confirmed in the experiments carried out.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 39-44
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble of classifiers based on CNN for increasing generalization ability in face image recognition
Autorzy:
Szmurło, Robert
Osowski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/2173680.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
CNN
ensemble of classifiers
face recognition
feature selection
convolutional neural networks
splotowe sieci neuronowe
zespół klasyfikatorów
rozpoznawanie twarzy
wybór funkcji
Opis:
The paper considers the problem of increasing the generalization ability of classification systems by creating an ensemble of classifiers based on the CNN architecture. Different structures of the ensemble will be considered and compared. Deep learning fulfills an important role in the developed system. The numerical descriptors created in the last locally connected convolution layer of CNN flattened to the form of a vector, are subjected to a few different selection mechanisms. Each of them chooses the independent set of features, selected according to the applied assessment techniques. Their results are combined with three classifiers: softmax, support vector machine, and random forest of the decision tree. All of them do simultaneously the same classification task. Their results are integrated into the final verdict of the ensemble. Different forms of arrangement of the ensemble are considered and tested on the recognition of facial images. Two different databases are used in experiments. One was composed of 68 classes of greyscale images and the second of 276 classes of color images. The results of experiments have shown high improvement of class recognition resulting from the application of the properly designed ensemble.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e141004
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble selection in one-versus-one scheme – case study for cutting tools classification
Autorzy:
Rojek, Izabela
Burduk, Robert
Heda, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/2086820.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ensemble of classifiers
ensemble selection
one-vs-one decomposition
cutting tool
zespół klasyfikatorów
wybór zespołu
dekompozycja jeden na jeden
narzędzie tnące
Opis:
The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; art. no. e136044, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble selection in one-versus-one scheme – case study for cutting tools classification
Autorzy:
Rojek, Izabela
Burduk, Robert
Heda, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/2090713.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ensemble of classifiers
ensemble selection
one-vs-one decomposition
cutting tool
zespół klasyfikatorów
wybór zespołu
rozkład jeden na jeden
narzędzie tnące
Opis:
The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; e136044, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies