- Tytuł:
- A variation of zero-divisor graphs
- Autorzy:
-
Gupta, Raibatak
Sen, M.
Ghosh, Shamik - Powiązania:
- https://bibliotekanauki.pl/articles/729141.pdf
- Data publikacji:
- 2015
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
rings
zero-divisor graphs
finite fields - Opis:
- In this paper, we define a new graph for a ring with unity by extending the definition of the usual 'zero-divisor graph'. For a ring R with unity, Γ₁(R) is defined to be the simple undirected graph having all non-zero elements of R as its vertices and two distinct vertices x,y are adjacent if and only if either xy=0 or yx=0 or x+y is a unit. We consider the conditions of connectedness and show that for a finite commutative ring R with unity, Γ₁(R) is connected if and only if R is not isomorphic to ℤ₃ or $ℤ₂^k$ (for any k ∈ ℕ-{1}\). Then we characterize the rings R for which Γ₁(R) realizes some well-known classes of graphs, viz., complete graphs, star graphs, paths (i.e., $P_n$), or cycles (i.e., $C_n$). We then look at different graph-theoretical properties of the graph Γ₁(F), where F is a finite field. We also find all possible Γ₁(R) graphs with at most 6 vertices.
- Źródło:
-
Discussiones Mathematicae - General Algebra and Applications; 2015, 35, 2; 159-176
1509-9415 - Pojawia się w:
- Discussiones Mathematicae - General Algebra and Applications
- Dostawca treści:
- Biblioteka Nauki