Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wybieranie danych" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Rough Modeling---a Bottom-up Approach to Model Construction
Autorzy:
Loken, T.
Komorowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908362.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model opisowy
wybieranie danych
knowledge discovery
rough sets
rough modeling
descriptive models
Opis:
Traditional data mining methods based on rough set theory focus on extracting models which are good at classifying unseen objects. If one wants to uncover new knowledge from the data, the model must have a high descriptive quality---it must describe the data set in a clear and concise manner, without sacrificing classification performance. Rough modeling, introduced by Kowalczyk (1998), is an approach which aims at providing models with good predictive and descriptive qualities, in addition to being computationally simple enough to handle large data sets. As rough models are flexible in nature and simple to generate, it is possible to generate a large number of models and search through them for the best model. Initial experiments confirm that the drop in performance of rough models compared to models induced using traditional rough set methods is slight at worst, and the gain in descriptive quality is very large.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 3; 675-690
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Problems of medical data mining
Autorzy:
Szpunar-Huk, E.
Powiązania:
https://bibliotekanauki.pl/articles/951662.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wybieranie danych
medyczne przetwarzanie danych
zestawy reguł
data mining
medical data processing
rule sets
Opis:
The article discusses the main problems connected to the specificity of medical aspects, especially as concerns the quality and means of selection of data and tools used for constructing classification systems. Special attention is devoted to the risks inherent in direct application of classical knowledge extraction algorithms (such as the algorithms for constructing decision trees) to medical data. The article describes some attempts at solving emerging problems and points to the need for analysis of classifiers with regard to more than just their potential redundancy and mutual exclusion. The article also proposes two functions, useful for analysing rule sets with focus on data semantics.
Źródło:
Journal of Medical Informatics & Technologies; 2004, 7; KB91-98
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The sigma-if neural network as a method of dynamic selection of decision subspaces for medical reasoning systems
Autorzy:
Huk, M.
Powiązania:
https://bibliotekanauki.pl/articles/951660.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sztuczna inteligencja
wybieranie danych
sieci nuronowe sigma-if
wybór miejsca decyzji
nieniszczące neuronowe przycinanie sieci
artificial intelligence
data mining
sigma-if neural network
decision space selection
non-destructive neural network pruning
Opis:
To-date research in the area of applied medical artificial intelligence systems suggests that it is necessary to focus further on the characteristic requirements of this research field. One of those requirements is related to the need for effective analysis of multidimensional heterogeneous data sets, which poses particular difficulties when considering AI-suggested solutions. Recent works point to the possibility of extending the activation function of a perception to the time domain, thus significantly enhancing the capabilities of neural networks. This change results in the ability to dynamically tune the size of the decision space under consideration, which stems from continuous adaptation of the interneuron connection architecture to the data being classified. Such adaptation reflects the importance of individual decision attributes for the patterns being classified, as defined by the Sigma-if network during its training phase. These characteristics enable effective employment of such networks in solving classification problems, which emerge in medical sciences. The described approach is also a novel, interesting area of neural network research. This article discusses selected aspects of construction as well as training of Sigma-if networks, based on a sample problem of classifying Arabic numeral images.
Źródło:
Journal of Medical Informatics & Technologies; 2004, 7; KB65-73
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies