Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "współczynniki cepstralne" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Speech signal processing and analysis tool
Narzędzie do przetwarzania i analizy sygnału mowy
Autorzy:
Mięsikowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/158001.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
przetwarzanie sygnału mowy
współczynniki cepstralne
speech signal processing
cepstral coefficients
Opis:
The project's objective is to create a tool intended for processing, analysis, and parameterizing human speech signal. The main aim is to obtain a speech signal image with some selected parameterization methods. The methods include use of 2D parameterization grid [1, 2] as well as cepstral coefficients CC [3]. Obtaining signal image as well as its further analysis without signal preprocessing is extremely difficult and the process doesn't guarantee desirable results. For this reason the tool is based on two main modules. The first one is intended for signal preprocessing, preparing it for further analysis. The other one provides signal parameterization methods. The tool was implemented in Java language.
W pracy podjęto próbę stworzenia narzędzia umożliwiającego przetwarzanie, analizę i parametryzację sygnału mowy. Głównym celem jest pozyskanie obrazu sygnału mowy za pomocą wybranych metod parametryzacji. Wybrane metody parametryzacji sygnału mowy to parametryzacja za pomocą siatki dwuwymiarowej [1, 2] oraz współczynniki cepstralne [3]. Zobrazowanie sygnału oraz jego dalsza analiza bez operacji wstępnego przetworzenia sygnału jest procesem trudnym i nie zawsze przynosi pożądane rezultaty. Wobec tego narzędzie wyposażono w dwa zasadnicze moduły. Pierwszy moduł odpowiedzialny jest za wstępne przetworzenie sygnału, przygotowujące sygnał do dalszej analizy. Drugi moduł dostarcza metod parametryzacji sygnału mowy. Narzędzie zaimplementowano w języku Java.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 12, 12; 43-45
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wyników analizy cepstralnej z innymi parametrami oceny głosu u pacjentów z dysfoniami zawodowymi
Comparison of cepstral coefficients to other voice evaluation parameters in patients with occupational dysphonia
Autorzy:
Niebudek-Bogusz, Ewa
Strumiłło, Paweł
Wiktorowicz, Justyna
Śliwińska-Kowalska, Mariola
Powiązania:
https://bibliotekanauki.pl/articles/2166319.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
kompleksowa ocena głosu
współczynniki cepstralne MFCC
zawodowe zaburzenia głosu
complex voice assessment
mel-cepstral coefficients
MFCCs
occupational voice disorders
Opis:
Wprowadzenie: W ostatnim czasie wśród obiektywnych metod oceny głosu uznaniem cieszy się analiza akustyczna oparta na wyznaczaniu współczynników cepstralnych MFCC (mel-frequency cepstral coefficients). Celem badania była ocena ich zastosowania w diagnozowaniu dysfonii zawodowych w porównaniu z innymi subiektywnymi i obiektywnymi parametrami diagnostycznymi zaburzeń głosu. Materiał i metody: W badaniu wzięły udział 2 grupy kobiet: grupa badana - 55 nauczycielek (średni wiek: 45 lat) z dysfoniami o podłożu zawodowym, potwierdzonymi badaniem laryngowideostroboskopowym, oraz grupa porównawcza - 40 kobiet z głosem prawidłowym (średni wiek: 43 lata). Próbki dźwiękowe (samogłoska ‘a' oraz 4 znormalizowane fonetycznie zdania) poddano analizie MFCC. Wyniki porównano z parametrami akustycznymi (z grupy jittera, z grupy shimmera, parametrem oceny szumów NHR i współczynnikiem chrypki Yanagihary), parametrem aerodynamicznym (maksymalnym czasem fonacji) i parametrami subiektywnymi (skalą percepcyjną GRBAS i wskaźnikiem niepełnosprawności głosowej VHI). Wyniki: Analiza cepstralna wykazała znaczące różnice między grupą badaną a porównawczą, istotne dla współczynników MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, szczególnie dla MFCC6 (p < 0,001) oraz dla MFCC8 (p < 0,009), co może sugerować ich przydatność kliniczną. Z kolei w grupie badanej MFCC4, MFCC8 i MFCC10 istotnie korelowały z większością zastosowanych parametrów obiektywnych oceny głosu. Ponadto współczynnik MFCC8, który u badanych nauczycielek korelował istotnie z wszystkimi ww. 8 parametrami obiektywnymi, wykazał też istotną zależność z cechą dystynktywną A (asthenity) subiektywnej skali GRBAS, cechującej głos słaby, zmęczony. Wnioski: Analiza cepstralna, oparta na wyznaczaniu współczynników MFCC, jest dobrze rokującym narzędziem do obiektywnej diagnostyki dysfonii zawodowych, które bardziej niż inne metody analizy akustycznej odzwierciedla cechy percepcyjne głosu. Med. Pr. 2013;64(6):805–816
Background: Special consideration has recently been given to cepstral analysis with mel-frequency cepstral coefficients (MFCCs). The aim of this study was to assess the applicability of MFCCs in acoustic analysis for diagnosing occupational dysphonia in comparison to subjective and objective parameters of voice evaluation. Materials and Methods: The study comprised 2 groups, one of 55 female teachers (mean age: 45 years) with occupational dysphonia confirmed by videostroboscopy and 40 female controls with normal voice (mean age: 43 years). The acoustic samples involving sustained vowels "a" and four standardized sentences were analyzed by computed analysis of MFCCs. The results were compared to acoustic parameters of jitter and shimmer groups, noise to harmonic ratio, Yanagihara index evaluating the grade of hoarseness, the aerodynamic parameter: maximum phonation time and also subjective parameters: GRBAS perceptual scale and Voice Handicap Index (VHI). Results: The compared results revealed differences between the study and control groups, significant for MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, particularly for MFCC6 (p < 0.001) and MFCC8 (p < 0.009), which may suggest their clinical applicability. In the study group, MFCC4, MFCC8 and MFCC10 correlated significantly with the major objective parameters of voice assessment. Moreover, MFCC8 coefficient, which in the female teachers correlated with all eight objective parameters, also showed the significant relation with perceptual voice feature A (asthenity) of subjective scale GRBAS, characteristic of weak tired voice. Conclusions: The cepstral analysis with mel frequency cepstral coefficients is a promising tool for evaluating occupational voice disorders, capable of reflecting the perceptual voice features better than other methods of acoustic analysis. Med Pr 2013;64(6):805–816
Źródło:
Medycyna Pracy; 2013, 64, 6; 805-816
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cepstral analysis of vowels of esophageal speakers
Analiza cepstralna samogłosek mówców mowy przełykowej
Autorzy:
Mięsikowska, M.
Radziszewski, L.
Powiązania:
https://bibliotekanauki.pl/articles/152112.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sygnał mowy normalnej i przełykowej
współczynniki cepstralne
analiza dyskryminacyjna
rozpoznawanie samogłosek
normal speech
esophageal speech
cepstral features
discriminant analysis
vowels recognition
Opis:
The aim of this study was to compare normal (NL) and esophageal (ES) speech signals in scope of vowels in order to show differences between signals. A discriminant analysis based on cepstral features extracted from vowels of NL and ES speech was performed. The comparison was made on the basis of the classification function coefficients and the results of the classification for each speech. Vowels recordings were acquired from 10 NL speakers and 10 ES speakers. The discriminant analysis was based on cepstral features extracted from vowel recordings, and was performed separately for NL speech and ES speech. Then a comparison between coefficients of classification functions of NL and ES vowels using the Euclidean distance was made. Based on the resulting classification matrix of NL and ES speech, the results of classification were compared. The discriminant analysis based on cepstral features showed 76% of the mean classification score for ES speech and 90% for NL speech. The Euclidean distance showed low differences between the vowel /a/ of NL speech and the vowel /a/ of ES speech and between the vowel /e/ of NL speech and the vowel /e/ of ES speech.
Celem pracy było porównanie sygnału mowy normalnej (NL) i przełykowej (ES) w zakresie samogłosek w celu wykazania różnic pomiędzy sygnałami. Przeprowadzono analizę dyskryminacyjną współczynników cepstralnych uzyskanych z samogłosek mowy NL i ES. Porównania dokonano na podstawie uzyskanych współczynników funkcji klasyfikacyjnych oraz otrzymanych wyników klasyfikacji dla każdej mowy. Sygnał mowy każdej samogłoski pozyskany został od 10 mówców mowy NL i 10 mówców mowy ES. Analizę dyskryminacyjną przeprowadzono w oparciu o współczynniki cepstralne oddzielnie dla mowy NL i mowy ES. Następnie dokonano porównania uzyskanych współczynników funkcji klasyfikacyjnych samogłosek mowy NL i mowy ES, wykorzystując do tego celu odległość Euklidesa. Na podstawie macierzy klasyfikacji otrzymanej dla mowy NL i ES porównano rezultaty klasyfikacji. Analiza dyskryminacyjna w oparciu o współczynniki cepstralne wykazała 76% jako średni wynik klasyfikacji dla mowy ES, natomiast 90% dla mowy NL. Odległość Euklidesa wskazuje na najmniejsze różnice w zakresie samogłoski /a/ i /e/ mowy NL i ES.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 11, 11; 968-971
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discriminant analysis of vowels of tracheoesophageal speakers
Analiza dyskryminacyjna samogłosek mówców mowy przetokowej
Autorzy:
Mięsikowska, M.
Radziszewski, L.
Powiązania:
https://bibliotekanauki.pl/articles/155972.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
normal speech
tracheoesophageal speech
cepstral features
discriminant analysis
vowels recognition
sygnał mowy normalnej i przetokowej
współczynniki cepstralne
analiza dyskryminacyjna
rozpoznawanie samogłosek
Opis:
The aim of this study was to compare normal (NL) and tracheoesophageal (TE) vowel speech signals in order to show differences between them. Cepstral features extracted from vowels of NL and TE speech were analyzed using discriminant analysis. The comparison was made on the basis of the classification function coefficients and the results of the classification for each speech. Vowels recordings were acquired from 10 NL speakers and 12 TE speakers. Discriminant analysis was based on cepstral features extracted from vowel recordings, and was performed separately for NL speech and TE speech. Then a comparison between the coefficients of classification functions of NL and TE vowels using the Euclidean distance was made. Based on the resulting classification matrix of NL and TE speech, the results of classification were compared. The discriminant analysis based on cepstral features showed 79% of the mean classification score for TE speech. The Euclidean distance showed low differences between vowel /a/ of NL speech and vowel /a/ of TE speech and between vowel /o/ of NL speech and vowel /o/ of TE speech.
Celem pracy było porównanie sygnału mowy przetokowej (TE) do mowy normalnej (NL) w zakresie samogłosek, aby wykazać różnice pomiędzy sygnałami. Współczynniki cepstralne uzyskane z samogłosek mowy NL i TE poddano analizie dyskryminacyjnej. Na podstawie uzyskanych współczynników funkcji klasyfikacyjnych oraz otrzymanych wyników klasyfikacji dokonano porównania sygnałów mowy NL i TE. Nagrania samogłosek pozyskane zostały od 10 mówców mowy NL i 12 mówców mowy TE. Analizę dyskryminacyjną przeprowadzono w oparciu o współczynniki cepstralne oddzielnie dla mowy NL i mowy TE. Następnie dokonano porównania uzyskanych współczynników funkcji klasyfikacyjnych samogłosek mowy NL i mowy TE, wykorzystując do tego celu odległość Euklidesa. Na podstawie macierzy klasyfikacji otrzymanej dla mowy NL i TE porównano rezultaty klasyfikacji. Analiza dyskryminacyjna w oparciu o współczynniki cepstralne wykazała 79% jako średni wynik klasyfikacji dla mowy TE. Odległość Euklidesa wskazuje na najmniejsze różnice w zakresie samogłoski /a/ i /o/ mowy NL i TE.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 6, 6; 523-525
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A cough-based COVID-19 detection with gammatone and Mel-frequency cepstral coefficients
Autorzy:
Benmalek, Elmehdi
El Mhamdi, Jamal
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/2203646.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
COVID-19
cough recordings
machine learning
mel-frequency cepstral coefficients
gammatone cepstral coefficients
feature selection
uczenie maszynowe
współczynniki mel-cepstralne
Opis:
Many countries have adopted a public health approach that aims to address the particular challenges faced during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the disease. Among these systems, voice-based ones since the virus have a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients (MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023214
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies