Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wibracje gruntu" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Effect of Blast-induced Ground Vibration on Factor of Safety of Pit Wall Stability
Wpływ wibracji gruntu wywołanych podmuchami na współczynnik bezpieczeństwa stabilności zboczy odkrywki
Autorzy:
Jaroonpattanapong, P.
Pantachang, K.
Thungfung, S.
Petthong, N.
Powiązania:
https://bibliotekanauki.pl/articles/319343.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
blast-induced ground vibration
slope stability
factor of safety
limit equilibrium analysis
pseudo-static analysis
wibracje gruntu wywołane podmuchami
stateczność zbocza
współczynnik bezpieczeństwa
analiza równowagi granicznej
analiza pseudostatyczna
Opis:
The regulated maximum peak particle velocity (PPV) from blasting operations of an open-pit coal mine is less than 2 mm/s to prevent mainly any public disturbance such as ground vibration and air blast. However, the blast-induce ground vibration can also decrease the stability of pit slope, which has not been intensively studied. A claystone pit wall, which is geotechnically investigated as having a plane failure type and the natural condition factor of safety (FS), has been selected for this study. The FS is selected to measure the effect of blast-induced ground vibration on the slope stability. The limit equilibrium, pseudo-static 1 (), and pseudo-static 2 () methods are used to determine the FS. The vibration results of blasting monitored at three slope positions: crest, middle, and toe, from two areas at the same pit wall, are recorded by blasting seismographs. Maximum charge weight per delay and the distance from blast areas to seismographs are collected to construct the scaled distance. The percentage change of FS of three methods from both areas compared to natural condition FS are all less than 4 percent considered that the slope stability is safe from blasting vibration (less than 15 percent). The relationship between the FS and maximum PPV from the limit equilibrium, pseudo-static 1 (), and pseudo-static 2 () methods indicate that the adverse maximum PPVs given the unity FS are 16.60 and 4.58, and 4.74 mm/s, respectively. The regulated PPV less than 2 mm/s at the mine is reasonable to prevent any possible plane failure. However, many impact parameters have not been included in this study, and their effects may disturb the pit wall stability.
Regulowana maksymalna szczytowa prędkość cząstek (PPV) z operacji wybuchowych w kopalni odkrywkowej wynosi mniej niż 2 mm / s, aby zapobiec głównie wszelkim zakłóceniom społecznym, takim jak wibracje gruntu i podmuch powietrza. Jednak wibracje gruntu wywołane podmuchami mogą również zmniejszyć stabilność zbocza wykopu, co nie było intensywnie badane. Do badania wybrano ścianę iłowca, która została zbadana geotechnicznie jako mająca typ zniszczenia płaskiego i znana jako naturalny współczynnik bezpieczeństwa (FS). FS jest wybierany do pomiaru wpływu wibracji gruntu wywołanych podmuchami na stabilność zbocza. Równowaga graniczna, metody pseudo-statyczne 1 (kH) i pseudostatyczne 2 (kH, kv) są używane do wyznaczania FS. Wyniki drgań robót strzałowych monitorowane w trzech położeniach zboczy: w wierzchołku, w środku i na palcach z dwóch obszarów na tej samej ścianie wykopu są rejestrowane za pomocą sejsmografów strzałowych. Maksymalny ciężar ładunku na opóźnienie i odległość od obszarów wybuchu do sejsmografów są zbierane w celu obliczenia wyskalowanej odległości. Procentowa zmiana FS trzech metod z obu obszarów w porównaniu ze stanem naturalnym FS wynosi mniej niż 4 procent, co oznacza, że stabilność zbocza jest bezpieczna przed drganiami wybuchowymi (mniej niż 15 procent). Zależność między FS i maksymalnym PPV z równowagi granicznej, pseudo- statyczna 1 (kH) i pseudo-statyczna 2 (kH, kv) wskazuje, że niekorzystne maksymalne PPV przy jednostkowej FS wynoszą 16,60 i 4,58 oraz 4,74 mm / s, odpowiednio. Regulowany PPV poniżej 2 mm / s w kopalni jest rozsądnym rozwiązaniem, aby zapobiec możliwej awarii. Jednak wiele parametrów uderzenia nie zostało uwzględnionych w tym badaniu, a ich wpływ może naruszyć stabilność zboczy odkrywki.
Źródło:
Inżynieria Mineralna; 2020, 1, 2; 147-154
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Neural Network Optimized by Modified Particle Swarm Optimization for Predicting Peak Particle Velocity Induced by Blasting Operations in Open Pit Mines
Autorzy:
Bui, Xuan‑Nam
Nguyen, Hoang
Nguyen, Truc Anh
Powiązania:
https://bibliotekanauki.pl/articles/2020892.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
blast-induced ground vibration
peak particle velocity
open pit mine
artificial neural network
modified particle swarm optimization
metaheuristic algorithms
wibracje gruntu wywołane podmuchami
drgania górotworu
górnictwo odkrywkowe
sztuczne sieci neuronowe
Opis:
Blasting is an indispensable part of the open pit mining operations. It plays a vital role in preparing the rock mass for subsequent operations, such as loading/unloading, transporting, crushing, and dumping. However, adverse effects, especially blast-induced ground vibrations, are considered one of the most dangerous problems. In this study, artificial intelligence was supposed to predict the intensity of blast-induced ground vibration, which is represented by the peak particle velocity (PPV). Accordingly, an artificial neural network was designed to predict PPV at the Coc Sau open pit coal mine with 137 blasting events were collected. Aiming to optimize the ANN model, the modified version of the particle swarm optimization (MPSO) algorithm was applied to optimize the ANN model for predicting PPV, called the MPSO-ANN model. For the comparison purposes, two forms of empirical equations, namely United States Bureau of Mining (USBM) and U Langefors - Kihlstrom, were also developed to predict PPV and compared with the proposed MPSO-ANN model. The results showed that the proposed MPSO-ANN model provided a better performance with a mean absolute error (MAE) of 1.217, root-mean-squared error (RMSE) of 1.456, and coefficient of determination (R2) of 0.956. Meanwhile, the empirical models only provided poorer performances with an MAE of 1.830 and 2.012, RMSE of 2.268 and 2.464, and R2 of 0.874 and 0.852 for the USBM and U Langefors – Kihlstrom empirical models, respectively.
Źródło:
Inżynieria Mineralna; 2021, 2; 79--90
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal positioning of vibration monitoring instruments and their impact on blast-induced seismic influence results
Optymalne umiejscowienie aparatury do monitorowania drgań i wibracji oraz ich wpływu na efekty sejsmiczne spowodowane pracami strzałowymi
Autorzy:
Stanković, Siniša
Dobrilović, Mario
Škrlec, Vinko
Powiązania:
https://bibliotekanauki.pl/articles/220350.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sejsmiczne następstwa prac strzałowych
maksymalna prędkość cząstek
umiejscowienie aparatury pomiarowej
wibracje gruntu
oddziaływanie na środowisko
seismic influence of blasting
peak particle velocity
positioning of vibration monitoring instruments
ground vibration
environmental impact
Opis:
The major downside of blasting works is blast vibrations. Extensive research has been done on the subject and many predictors, estimating Peak Particle Velocity (PPV), were published till date. However, they are either site specific or global (unified model regardless of geology) and can give more of a guideline than exact data to use. Moreover, the model itself among other factors highly depends on positioning of vibration monitoring instruments. When fitting of experimental data with best fit curve and 95% confidence line, the equation is valid only for the scaled distance (SD) range used for fitting. Extrapolation outside of this range gives erroneous results. Therefore, using the specific prediction model, to predetermine optimal positioning of vibration monitoring instruments has been verified to be crucial. The results show that vibration monitoring instruments positioned at a predetermined distance from the source of the blast give more reliable data for further calculations than those positioned outside of a calculated range. This paper gives recommendation for vibration monitoring instruments positioning during test blast on any new site, to optimize charge weight per delay for future blasting works without increasing possibility of damaging surrounding structures.
Jedną z głównych niedogodności związanych z pracami strzałowymi są spowodowane przez te prace wibracje. Problem ten był dogłębnie badany, opracowano także wskaźniki pozwalające na oszacowanie maksymalnej prędkości ruchu cząstek (Peak Particle Velocity). Jednakże w większości wskaźniki te są albo globalne (wspólny model niezależny od geologii terenu) lub odnoszące się do specyfiki terenu; dlatego też traktować je należy bardziej jako wytyczne do obliczeń niż dokładne dane. Ponadto, wyniki modelowania uzależnione są, między innymi, od lokalizacji i rozmieszczenia instrumentów do pomiarów i monitorowania drgań oraz wibracji. Przy dopasowaniu danych eksperymentalnych krzywą najlepszego dopasowania i linią obrazującą stopień zaufania na poziomie 95%, okazuje się, że równanie modelu zastosowanie ma jedynie dla skalowanych odległości wykorzystanych w dopasowaniu. Ekstrapolowanie poza ten zakres daje wyniki błędne. Dlatego też przed opracowaniem właściwego modelu prognozowania kwestią kluczową jest zastosowanie wstępnego modelu do określenia optymalnej lokalizacji i rozmieszczenia instrumentów pomiarowych. Wyniki wskazują, że rozmieszczenie aparatury pomiarowej we wcześniej wyznaczonej odległości od źródła wybuchu daje bardziej wiarygodne wyniki będące podstawą do dalszych obliczeń niż w przypadku instrumentów umieszczonych poza wyliczonym zakresem. W pracy tej podkreśla się konieczność właściwego umiejscowienia aparatury pomiarowej w trakcie prac strzałowych w nowym miejscu przed przystąpieniem do właściwych obliczeń optymalnej wagi ładunku wybuchowego oraz czasu zwłoki pomiędzy kolejnym strzałami, tak by nie zwiększać ryzyka uszkodzenia sąsiadujących struktur.
Źródło:
Archives of Mining Sciences; 2019, 64, 3; 591-607
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies