Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "water demand forecasting" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Water demand forecasting using extreme learning machines
Przewidywanie zapotrzebowania na wodę z użyciem technik uczenia maszynowego
Autorzy:
Tiwari, M.
Adamowski, J.
Adamowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/292339.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial neural networks
bootstrap
Canada
extreme learning machines
uncertainty
water demand forecasting
wavelets
ekstremalne maszyny uczące się
falki
Kanada
niepewność
prognozowanie zapotrzebowania na wodę
sztuczne sieci neuronowe
Opis:
The capacity of recently-developed extreme learning machine (ELM) modelling approaches in forecasting daily urban water demand from limited data, alone or in concert with wavelet analysis (W) or bootstrap (B) methods (i.e., ELM, ELMW, ELMB), was assessed, and compared to that of equivalent traditional artificial neural network-based models (i.e., ANN, ANNW, ANNB). The urban water demand forecasting models were developed using 3-year water demand and climate datasets for the city of Calgary, Alberta, Canada. While the hybrid ELMB and ANNB models provided satisfactory 1-day lead-time forecasts of similar accuracy, the ANNW and ELMW models provided greater accuracy, with the ELMW model outperforming the ANNW model. Significant improvement in peak urban water demand prediction was only achieved with the ELMW model. The superiority of the ELMW model over both the ANNW or ANNB models demonstrated the significant role of wavelet transformation in improving the overall performance of the urban water demand model.
Oceniono zdolność modelowania z użyciem ekstremalnej maszyny uczącej się (ELM) stosowanej samodzielnie bądź w połączeniu z analizą falkową (W) lub metodami bootstrapowymi (B) (tzn. ELM, ELMW, ELMB) do przewidywania dobowego zapotrzebowania na wodę w mieście. Wyniki porównano z uzyskanymi tradycyjnymi metodami bazującymi na sztucznych sieciach neuronowych (tzn. ANN, ANNW, ANNB). Modele przewidujące zapotrzebowanie na wodę zbudowano z wykorzystaniem trzyletniego zapotrzebowania na wodę i zestawu danych klimatycznych dla miasta Calgary w kanadyjskiej prowincji Alberta. Hybrydowe modele ELMB i ANNB zapewniały satysfakcjonujące prognozy jednodniowe o podobnej dokładności, natomiast wyniki uzyskane z zastosowaniem modeli ELMW i ANNW były bardziej dokładne, przy czym model ELMW okazał się lepszy niż ANNW. Istotną poprawę prognozowania szczytowego zapotrzebowania na wodę w mieście uzyskano jedynie z zastosowaniem modelu ELMW. Wyższość modelu ELMW nad modelami ANNW czy ANNB dowodzi znaczącej roli transformacji falkowej w usprawnianiu działania modeli prognozujących zapotrzebowanie na wodę w mieście.
Źródło:
Journal of Water and Land Development; 2016, 28; 37-52
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stochastyczne modele godzinowego poboru wody w wybranym systemie wodociągowym
Stochastic models of water demand in a chosen water-supply system
Autorzy:
Siwoń, Z.
Cieżak, W.
Cieżak, J.
Powiązania:
https://bibliotekanauki.pl/articles/236800.pdf
Data publikacji:
2005
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
system wodociągowy
zużycie wody
prognozowanie
water supply system
water demand
forecasting
Opis:
Zaprezentowano dwa modele prognostyczne szeregów czasowych godzinowego poboru wody, tj. model klasy ARIMA i model opracowany przez Wintera, zweryfikowane na podstawie analizy zbiorów ciągłych obserwacji poboru wody w systemie wodociągowym Brzegu. Wykazano, że obie metody prognozowania spełniają wygodną dla potrzeb praktycznych zasadę łatwej dostępności danych wyjściowych do prognozowania. Nie ujmują one żadnych zmiennych zewnętrznych, a bazują wyłącznie na chronologicznie uszeregowanych ciągach obserwacji poboru wody z bezpośredniej przeszłości. Zaletą modeli klasy ARIMA przy ich oszczędnej parametryzacji jest to, że proces prognozowania godzinowego poboru wody może być zainicjowany już przy stosunkowo małej liczbie wyrazów szeregu czasowego. W praktyce już dwutygodniowy ciąg obserwacji godzinowego poboru wody daje możliwość zainicjowania procesu prognozowania. Strukturę modelu ARIMA (1,0,0)(1,1,0)24 można uznać za uniwersalną, nadającą się do prognozowania godzinowych poborów wody w miejskich systemach wodociągowych. Przyjęcie tej tezy, zwłaszcza że pokrywa się ona z wcześniejszymi wynikami badań własnych, w znacznym stopniu może uprościć automatyzację prognozowania, bo eliminuje się z procesu analizy szeregu czasowego etap poszukiwania struktury modelu. Stwierdzono, że przekształcenie szeregu surowego w szereg Fouriera poprawia wyniki prognoz oraz że odpowiednimi modelami dotyczącymi prognoz poboru wody są sezonowe modele multiplikatywne. Metody prognozowania oparte na algorytmach wygładzania wykładniczego są łatwe do zastosowania i nie wymagają założenia o stacjonarności szeregu czasowego. Addytywny model Wintera daje prognozy, które wykazują najmniejsze błędy. Stwierdzono, że nie zawsze złożone metody dają optymalne prognozy, a zaprezentowane modele, w hierarchii metod służących do prognozowania poboru wody, plasowane są na wysokim miejscu.
The study reported on in this paper involved two models, a model of ARIMA class and the model developed by Winter, which are used to forecast an hourly water demand time series. The models have been verified by analyzing the sets of continuous observations of the water demand in the water-supply system of Brzeg. Both the methods meet the requirement of an easy availability of the input data for the needs of forecasting. They do not include any external variables and are based solely on the preceding chronological water demand time series. Characterized by a reasonable parametrization, the ARIMA class models offer the potentiality for initiating the forecasting of water demand with a comparatively small number of points in the time series. In practice, 14-day hourly observations will suffice to initiate the forecasting process. The structure of the ARIMA (1,0,0)(1,1,0)24 model can be considered universal and suitable for forecasting the water demand in municipal water-supply systems. Accepting this thesis, as well as taking into account the fact that it is consistent with the results of our previous researches, we can notably simplify the automation of forecasting, because in this way the stage of search for the model structure is eliminated from the analysis of the time series. It is worth noting that the transformation of a raw time series into a Fourier series upgrades the quality of the forecasts and that seasonal multiplicative models are suitable for forecasting the water demand. Forecasting methods based on algorithms for an exponential smoothing of the time series are easy to use and do not require the assumption of a stationary input sequence. The additive Winter' model generates forecasts with the smallest errors. Our study has produced the following findings: sophisticated methods do not always generate optimal forecasts; the models presented in this paper rank high in the hierarchy of the methods used for forecasting of water demand.
Źródło:
Ochrona Środowiska; 2005, R. 27, nr 1, 1; 7-13
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie obciążenia hydraulicznego miejskiego systemu wodociągowego z wykorzystaniem modeli rozmytych typu TSK
Forecasting hydraulic load of urban water supply system using TSK fuzzy models
Autorzy:
Stachura, M.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/237351.pdf
Data publikacji:
2014
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Sieć wodociągowa
pobór wody
modelowanie
prognozowanie
Water supply system
water demand
modeling
forecasting
Opis:
Przedstawiono możliwości prognozowania dobowego poboru wody w miejskim systemie wodociągowym. W tym celu wykorzystano modele o strukturze Takagi-Sugeno-Kanga (TSK), w których następnikiem jest klasyczny model liniowy uwzględniający dynamikę, co pozwala na określenie ich struktury jako „modeli liniowych rozmywanych strefowo”. W przeprowadzonych rozważaniach wykorzystano dane (o liczebności 974) pochodzące z sieci wodociągowej Rzeszowa obejmujące przedział czasu od 01-07-2005 do 29-02-2008. Na podstawie zarejestrowanych danych porównano tygodniowe wartości poboru wody w różnych porach roku. Kolejno przedstawiono modele TSK oraz sposób ich wyznaczania. Wykazano, że modelowanie może odbyć się w oparciu o znajomość tygodniowych zmian poboru wody, a wynikowy model pozwala prognozować wartości poboru wody w szerokim zakresie zmienności. Uzyskane wyniki przy różnych kombinacjach rozmywania i doboru struktury konkluzji modelu były porównywalne, z czego wynika, że wykorzystywana metoda wyznaczania modeli rozmytych może być stosowana do określania właściwości dynamicznych procesów, w przypadku których nie jest znany dokładny opis modelowanych zjawisk.
The paper presents possibilities of daily water demand forecasting for municipal water supply system. For this purpose, Takagi-Sugeno-Kang’s (TSK) models were applied. In this type of models the conclusion is in the form of a classical linear function, which allows describing their structure as ‛fuzzified linear models’. For the purpose of this study data from the water supply network for the city of Rzeszow was used (974 samples). It covered the period from 1 July 2005 to 29 February 2008. Based on the collected data weakly water demand values were compared for different seasons. Subsequent TSK models were described together with the way they were developed. It was shown that modeling could be based on weakly water demand data and that resulting model allowed predicting water demand values over a wide range of variability. The results received for different combinations of fuzzification and model conclusion structure selection were comparable. Therefore, it could be concluded that the method used for fuzzy model development might be used to determine dynamic properties of the processes for which the exact description of modeled phenomena was unknown.
Źródło:
Ochrona Środowiska; 2014, 36, 1; 57-60
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania szeregów czasowych krótkotrwałego poboru wody w wybranych systemach wodociągowych.
Artificial Neural Networks for Predicting Water Demand Time Series in Municipal Water Supply Systems of Choice.
Autorzy:
Cieżak, W.
Siwoń, Z.
Cieżak, J.
Powiązania:
https://bibliotekanauki.pl/articles/237688.pdf
Data publikacji:
2006
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
system wodociągowy
pobór wody
prognozowanie
sztuczne sieci neuronowe
water supply system
water demand
forecasting
artificial neuron networks
Opis:
W artykule omówiono wyniki modelowania i prognozowania szeregów czasowych poboru wody z miejskich sieci wodociągowych dla potrzeb optymalnego sterowania procesami zaopatrzenia w wodę. Zaprezentowano wyniki praktycznej weryfikacji sztucznych sieci neuronowych na przykładzie wydzielonego rejonu sieci wodociągowej we Wrocławiu i Brzegu. Przedstawiona została propozycja struktury sieci neuronowej przystosowanej do prognozowania zapotrzebowania na wodę, a także omówiono metody przygotowania danych statystycznych do późniejszego wykorzystania przy prognozowaniu z zastosowaniem sieci neuronowych. Wykazano silne i słabe strony omawianej metody prognozowania, jej skuteczność i dokładność. Skuteczność sztucznych sieci neuronowych w prognozowaniu szeregów czasowych krótkotrwałego poboru wody okazała się w praktyce porównywalna ze skutecznością modeli klasy ARIMA.
Water demand time series were modeled and forecast for the purpose of optimal control of water supply processes in municipal water supply systems. The verification of the artificial neural network models involved a separate water supply subsystem for Wrocław and the water supply system for Brzeg. A structure of artificial neural networks is proposed for water demand prediction. Methods of statistical data processing for further use with neural networks for water demand prediction are also discussed. The strengths and weaknesses of this approach are pointed out along with its efficiency and accuracy. The results show that the efficiency of neural networks in forecasting the water demand time series is comparable with the efficiency of ARIMA models. Hence, the neural networks can be used as an alternative to the ARIMA models.
Źródło:
Ochrona Środowiska; 2006, R. 28, nr 1, 1; 39-44
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele neuronowe szeregów czasowych godzinowego poboru wody w osiedlach mieszkaniowych
Neural network models of hourly water demand time series in housing areas
Autorzy:
Siwoń, Z.
Cieżak, W.
Cieżak, J.
Powiązania:
https://bibliotekanauki.pl/articles/237770.pdf
Data publikacji:
2011
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
sztuczne sieci neuronowe
szeregi czasowe
prognozowanie
pobór wody
system wodociągowy
artificial neural networks
time series
forecasting
water demand
water supply system
Opis:
Omówiono wyniki modelowania i prognozowania szeregów czasowych poboru wody z miejskich sieci wodociągowych na potrzeby optymalnego sterowania procesem zaopatrzenia w wodę. Zaprezentowano wyniki weryfikacji sztucznych sieci neuronowych na przykładzie wydzielonego rejonu sieci wodociągowej w Kłodzku i we Wrocławiu. Przedstawiono analizę przydatności sztucznych sieci neuronowych w bieżącym prognozowaniu szeregów czasowych godzinowego poboru wody, która wykazała, że optymalne struktury sieci perceptronowych i liniowych nie są skomplikowane, co między innymi ułatwia proces ich douczania lub uczenia od nowa. W praktyce błędy prognozowania przy wykorzystaniu wielowarstwowych perceptronowych sieci neuronowych i liniowych sieci neuronowych okazały się porównywalne lub mniejsze od błędów predykcji wg modeli klasy ARIMA i metod wykładniczego wygładzania szeregów czasowych. Wykazano, że przydatność sieci o radialnych funkcjach bazowych do prognozowania dobowych histogramów godzinowego poboru wody była ograniczona i jednocześnie mniejsza niż sieci liniowych oraz perceptronowych.
The paper outlines the results of modeling and forecasting the water demand time series for the optimal control of water supply processes in municipal water supply systems. The results of verification of the artificial neural network models have been presented for a separate water supply subsystem in Klodzko and in Wroclaw. Analysis of the performance of artificial neural networks when used to develop current predictions of the time series for hourly water demand has revealed that the optimal structures of perceptron and linear networks are not very complicated, which facilitates the process of additional training or re-training. Practically, it has been found that forecasting produces comparable or smaller errors when focused on multilayer perceptron neural networks and linear neural networks than when based on the use of ARIMA models and exponential smoothing of the time series. Applicability of neural networks of radial base functions (RBF) to forecasting daily water demand histograms is limited, and lesser than that of linear and perceptron networks.
Źródło:
Ochrona Środowiska; 2011, 33, 2; 23-26
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies