Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wariancja średniej" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Ocena wariancji wyniku cyfrowej filtracji uśredniającej
Variance evaluation of the result of averaging digital filtration
Autorzy:
Domańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/154915.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
ruchoma średnia
uśrednianie koherentne
wariancja średniej
skorelowane dane
moving average
cumulating average
variance of average
correlated data
Opis:
Artykuł dotyczy cyfrowego uśredniania metodą ruchomej średniej oraz metodą z kumulacją, stosowanego w celu eliminacji lub redukcji losowego składnika stanowiącego zakłócenie wielkości deterministycznej. Podano zależność określającą wariancję wyniku uśredniania każdą z metod, co umożliwia ocenę jego niepewności. Odmienna specyfika metod przekłada się na odmienną postać zależności określającej wariancję i odmienne warunki, przy których można osiągać ekstremalny zysk z uśredniania.
The paper concerns digital averaging performed with the use of the moving average method and the cumulative method. This type of averaging is applied in order to eliminate or reduce the random component, being a disturbance of the deterministic quantity. Moreover, the paper presents the dependence determining the variance of the averaging result with the use of each of these methods, which makes it possible to estimate the uncertainty of the result. A different character of each of the methods implies a different form of the dependence determining the variance as well as different conditions with which an extreme profit can be achieved on the averaging. MAV and CAV are digital averaging algorithms of the value of dependent from the time (signals). The algorithm MAV is fitted for averaging of aperiodic and periodic signals. The algorithm CAV is fitted for averaging of periodic signals or repeatable signals at multiples to their gaining. The filtration MAV influences reductively on the variance of the noise and on the variance of the primary signal, however CAV reduces only the variance of the noise, not changing the variance of the primary signal. The use of the filtration MAV and CAV promotes better repeatability of results, if are estimated from samples of the average signal. Both algorithms are realizations of digital filters of the type FIR. In the case MAV this is the single low-pass filter. In the case CAV this is "the group" of simultaneously working low-pass filters - every in length equal of numerous of the collection of the repetition and filters is as many as of samples counts the single repetition. Fundamental difference between MAV and CAV consists in the manner of the choice of the collection of samples (undergo averaging) for the purpose of the determination of the single value of the average signal. In MAV this are adjacent samples from the single registration of the signal. In CAV this are the cophasal samples, every from other repetition. In the case of the averaging filtration of signals periodic or repeatable is more effective the algorithm CAV. However it is more time-consuming than the algorithm MAV.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 9, 9; 750-753
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymacja punktowa cyfrowego estymatora wartości średniej sygnałów przypadkowych
Point estimation of the mean value digital estimator of random signals
Autorzy:
Sienkowski, S.
Kawecka, E.
Powiązania:
https://bibliotekanauki.pl/articles/154292.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
cyfrowy estymator wartości średniej
wartość oczekiwana
obciążenie
wariancja estymatora
mean value digital estimator
expected value
bias
estimator's ariance
Opis:
Artykuł przedstawia problematykę obliczania wartości oczekiwanej, obciążenia i wariancji cyfrowego estymatora wartości średniej sygnałów przypadkowych. W rzeczywistych sytuacjach pomiarowych estymacja obciążenia i wariancji, wymaga najczęściej wielokrotnego powtarzania eksperymentu pomiarowego. Nie są przy tym sformułowane kryteria dotyczące dokładności prowadzonych oszacowań. Zaprezentowane w pracy wzory omijają problem niejednoznaczności oszacowań i umożliwiają, na podstawie momentów, obliczenie obciążenia i wariancji cyfrowego estymatora wartości średniej sygnałów.
In the paper there is discussed a problem of estimation of the expected value, bias and variance of the mean value digital estimator of random signals. In real measurement tasks the estimation of the variance and bias values requires numerous repetitions of measurement experiments. Moreover, there are no clear criteria of the estimation accuracy. The equations formulated in this paper allow avoiding the problem of the estimation uncertainty and calculating the bias and variance of the digital estimator of the mean value signals basing on the so called moments. The paper is divided into 4 sections. Section 1 contains a short introduction to the issues of this paper. In Section 2 there is given a definition of the digital estimator of the mean value signal. The estimator's expected value is calculated - Eq. (2). On the basis of Eq. (2), the bias caused by quantization is given by Eq. (4). The variance is described by Eq. (7), while the mean square error by Eq. (8). It allows evaluating the consistency estimator. The variance of the mean value Eq. (13) is determined basing on the Widrow theory of quantization Eq. (10-12). In the next section there is presented an example of determining the bias - Eq. (17) and variance Eq. (20) of the mean value digital estimator of a Gaussian signal. The characteristic function of the Gaussian signal is given by Eq. (15). Table 1 presents the result of calculating the mean value variance for varying signal amplitude and increasing A/D resolution. Section 4 summarizes the investigations and presents some concluding remarks. There are discussed applications of the obtained expressions to evaluation of the measurement result uncertainty of the most important signal parameters.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 441-443
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies