Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "węzły cieplne" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Teoretyczne zagadnienia zastosowania rozdzielaczy hydraulicznych i zbiorników buforowych w nowoczesnych instalacjach grzewczych
Theoretical issues of use of hydraulic dividers and buffer tanks in heating systems
Autorzy:
Szkarowski, A.
Naskręt, L.
Powiązania:
https://bibliotekanauki.pl/articles/1826104.pdf
Data publikacji:
2008
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
systemy grzewcze
układy ciepłownicze
rozdzielacze hydrauliczne
węzły cieplne
Opis:
W ostatnich latach opracowano wiele nowych systemów grzewczych, których zasadniczym kierunkiem poszukiwań była ekonomizacja procesu przygotowania i dostawy ciepła do odbiorcy, zminimalizowanie strat, a tym samym kosztów zużycia energii. Istotę planowanej energooszczędnej gospodarki cieplnej, poza założeniami wynikającymi z koncepcji architektoniczno-budowlanej, stanowi odpowiednie sprecyzowanie następujących kryteriów projektowych: o rodzaju i ilości źródła (źródeł) ciepła; o sposobu dystrybucji energii cieplnej; o rodzaju urządzeń grzewczych w układach odbiorczych; o systemu regulacji; oraz założeń jakościowych uwzględniających: o specyfikę układów wymagających obniżonej temperatury czynnika grzewczego; o specyfikę układów wymagających podwyższonej temperatury czynnika grzewczego; o okresowe przegrzewy w układzie przygotowania ciepłej wody; o kojarzenie ciepła uzyskanego ze źródeł alternatywnych z energią cieplną źródła podstawowego; wykorzystanie ciepła strumienia powracającego z instalacji, przy braku rozbioru. W tak zdefiniowanym systemie gospodarowania energią cieplną, wykorzystuje się, na coraz większą skalę, urządzenia akumulujące energię cieplną, kojarzące przestrzenie hydrauliczne i rozwiązania umożliwiające przeprowadzenie procesów technologicznych uwzględniając warunki lokalne, np. z wykorzystaniem przyłącza energetycznego. Wśród takich opracowań należy wymienić akumulatory (bufory) ciepła, szczególnie zasobniki ciepła z wbudowanymi segmentami uwarstwiającymi, wielofunkcyjne pionowe i szeregowe rozdzielacze hydrauliczne, rozdzielacze hydrauliczne systemu ZORT, miniwęzełki realizujące zasadę indywidualnego przygotowania c.w.u. w mieszkaniu odbiorcy. Można wymienić liczne przykłady skutecznego zastosowania tych rozwiązań w budownictwie mieszkaniowym, użyteczności publicznej i przemysłowym. Inżynierskie i projektowe kwestie ich zastosowania są szeroko poruszane w literaturze technicznej [1-11]. Zaskakującym na tym tle jest fakt, że praktycznie brakuje jakiejkolwiek, szczegółowo opracowanej teorii działania omawianych urządzeń. Nie dziwi więc, że dość liczne są skargi mieszkańców budynków wyposażonych w najnowocześniejsze węzły cieplne. Dotyczą one przegrzania lub niedogrzania budynków, czy też, najczęściej niewystarczająco wysokiej temperatury c.w.u. Brak teorii powoduje, że takie przypadki eliminowane są metodą prób i błędów, czyli zmian wnoszonych w wyposażenie węzłów cieplnych a następnie obserwacji ich działania. W instalacjach cieplnych, zasilających dobrze termoizolowane obiekty, pojawia się coraz częściej problem konieczności obniżenia temperatury powrotu czynnika grzewczego i odzyskania niewykorzystanej w obwodach odbiorczych układu energii cieplnej zawartej w strumieniu powrotnym. Dzieje się tak za sprawą coraz doskonalszych materiałów, izolujących termicznie obiekty budowlane, udoskonalonych układów instalacyjnych, wyposażonych w nadążną armaturę i automatykę, jak również instalacji o małym zładzie i, co za tym idzie, o małej bezwładności cieplnej. W opracowaniu przedstawiono wyniki opracowania obliczone z modelu matematycznego dla trzech, z sześciu wstępnie klasyfikowanych układów cieplnych, na drodze spójnej teorii działania nowoczesnych urządzeń do akumulacji i rozdziału ciepła, usprawniających funkcjonowanie węzłów cieplnych i całego układu cieplnego.
In recent years, many new solutions improving operation of heating system have been introduced: heat layered storages, heat storages with segments for connection of secondary source of heat, multifunctional vertical and serial hydraulic distributors, distributors of ZORT system, heating mini-central for individual preparation of hot water. Surprising is the fact, that virtually there is no detailed rule of operation for the above equipments. However this abstract is an attempt to fill in the theoretical gap in field of technology of accumulation and distribution of heat in heating systems. In thermal systems, feedings well thermally insulated objects, the problem of necessity to lower temperature of return of heat medium and the recovery of unused in the receiving circuits of the system thermal energy contained in returning stream appears more and more often. This is due to more and more perfect materials, thermally insulating buildings, improved installation circuits, equipped with armature and automatics, and also installations with small framing and, as a result, small thermal inertia. The following categorization was proposed: - the basic heat system; - the heat system with transformation of temperature; - the heat system with a hydraulic distributor or with layered buffer; - the system with heat storage equipped with near-bottom plate; - the system equipped with heat layered storage with many layering segments. For the first two systems, rough schemes were introduced (Fig. 1a, Fig. 2a) and diagrams of heat agent cooling, during its flow via pipe lines of the system (Fig. 1b, Fig. 2b). The third system was dealt separately for each of its two characteristic types: - with vertical hydraulic distributor (Fig. 3a); - with heat layered storage in a position of distributor (Fig. 4a). Two , the most important ways of distributor operation are discussed (Fig. 3b, Fig. 3c). For all, discussed above systems a mathematical apparatus was formed, which allows calculation of proper technical operation for assigned parameters in order to improve proficiency of the system (formulas (1)-(29)).
Źródło:
Rocznik Ochrona Środowiska; 2008, Tom 10; 319-334
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ sterowania czasem pracy węzła cieplnego na stan temperaturowo-wilgotnościowy przegród budowlanych
Influence of heating system controlling on the temperature and humidity conditions of the walls
Autorzy:
Szkarowski, A.
Dyczkowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1826007.pdf
Data publikacji:
2008
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
węzły cieplne
ogrzewnictwo
instalacja centralnego ogrzewania
oszczędzanie energii cieplnej
Opis:
Jednym z najbardziej efektywnych, prostych i nisko kosztowych sposobów oszczędzania energii w ogrzewnictwie jest uzasadnione dopuszczalne obniżenie temperatury w pomieszczeniach ogrzewanych stosując czasowe wyłączanie instalacji c.o. W większości przypadków nowoczesnych węzłów cieplnych zastosowanie metody, opiera się wyłącznie o dokładnie przeprowadzone obliczenia, nie wymagając żadnego dodatkowego wyposażenia [1]. W budynkach o czasowym przebywaniu ludzi (większość budynków użyteczności publicznej, szkoły, biurowce itp.) metoda pozwala na oszczędzanie około 20% zapotrzebowania ciepła w sezonie grzewczym [2]. Pewnym paradoksem jest fakt, że tak łatwa do wdrożenia i efektywna metoda nadal jest mało stosowana. Istnieje kilka wyjaśnień takiego stanu rzeczy. Po pierwsze sterowanie czasem pracy często mylone jest z regulacją pogodową czy też z regulacją według krzywych grzania. Jednak bardziej istotną przyczyną jest obawa specjalistów dotycząca obniżenia temperatury przegród budowlanych i co za tym idzie - ich zawilgocenia. Autorzy chcą udowodnić, iż oszczędzanie energii cieplnej przy pomocy omawianej metody nie wpływa niekorzystnie na stan temperaturowowilgotnościowy konstrukcji ścian zewnętrznych. Sterowanie czasem pracy węzła c.o. zastosowano w budynku, w którym tylko okresowo przebywają ludzie. W takim przypadku obniżenie temperatury wewnątrz użytkowanych pomieszczeń jest w pełni uzasadnione, nie powoduje, bowiem obniżenia komfortu cieplnego, natomiast osiągany efekt jest maksymalny. Przedmiotem badań była obserwacja zmiany temperatury na obu powierzchniach ściany zewnętrznej oraz wewnątrz i na zewnątrz pomieszczenia.
One of the most effective, simple and low cost ways of energy saving in the house-heating is well-founded admissible lowering of temperature in heated rooms applying temporary switching off of the central heating installation. In the majority of modern heat centres application of the method is based only on exactly conducted calculations, requiring no additional equipment [1]. In buildings with temporar presence of people (majority of public usefulness buildings, schools, office buildings, etc.) this method allows to save about 20% of heat demand in the heating season [2]. A certain paradox is the fact, that so easy to introduce and effective method is still rarely applied. There are several explanations of state. First control of working time is often confused with weather control or with control according to heating curves.. However, more important cause is anxiety of experts concerning lowering of temperature of building walls and their damping as a result. Authors want to prove, that the saving thermal energy using mentioned method does not negatively influence temperature and humidity conditions of construction of external walls. Steering of heating centre working time was applied in a building in which people are periodically present. In such case lowering of the temperature inside used rooms is fully well-founded, because it does not cause lowering of the thermal comfort, and achieved effect is the highest. The paper presents an results of investigations performed in a thermally modernized building, in which a heating junction worktime control has been applied. The goal of this study was to substantiate the application of qualitative - quantitative regulations in highly insulated buildings. The authors have proven the effectiveness of the applied central heating controlling method in the economical aspect (fig. 1). Results show that the introduced method gives a large energy savings, in comparison to the most often used the economical setting controller. Research and simulations of temperature fluctuations in a building wall prove that there is no risk of wall damage. The results are presented in table 1 and in figures 2 and 3 with the theoretical calculations supplement of temperature fluctuations for the standard values (table 2). The analysis proves that if there is no long-lasting decrease of temperature inside wall then there is no is no cool down of the structure. The temperature and humidity conditions of walls are safe for construction wall because vapour is not condensing on the wall.
Źródło:
Rocznik Ochrona Środowiska; 2008, Tom 10; 343-350
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrydowe układy ogrzewania
Autorzy:
Gawryś, Daniel
Owczarek, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/111019.pdf
Data publikacji:
2019
Wydawca:
Centrum Rzeczoznawstwa Budowlanego Sp. z o.o.
Tematy:
hybrydowy system ogrzewania
pompy ciepła
kolektory słoneczne
węzły cieplne
hybrid heating system
heat pumps
solar collectors
heat centre
Opis:
Wybór najlepszego rozwiązania ma na celu zbadanie ekonomiczności rozwiązań dla hybrydowych układów ogrzewania oraz wybór według kryterium najniższego kosztu. Poddany analizie budynek jest biurowym obiektem budowlanym o fasadzie szklanej. Przyjęte zostały dwa układy hybrydowe. Pierwszy z nich zakłada pompę ciepła oraz węzeł cieplny do spełnienia całego zapotrzebowania na ciepło. Drugi układ przewiduje zastosowanie pompy ciepła oraz węzła cieplnego do ogrzania budynku oraz kolektory słoneczne do zapewnienia ciepłej wody użytkowej.
Choosing the best solution is to examine the cost-effectiveness of hybrid heating systems and the choice one of the criterion of the lowest cost. Analyzed building is an office building structure with a glass facade. We adopted two hybrid systems. The first of these involves the heating pump and the substation to meet total demand for heat. The second system provides for the use of heat pumps and district heating to heat the building and solar panels to deliver hot water.
Źródło:
Inżynieria Bezpieczeństwa Obiektów Antropogenicznych; 2019, 1-2; 1-7
2450-1859
2450-8721
Pojawia się w:
Inżynieria Bezpieczeństwa Obiektów Antropogenicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies