Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vision-based tracking" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Uncertainty and accuracy of vision-based tracking concerning stereophotogrammetry and noise-floor tests
Autorzy:
Ngeljaratan, Luna
Moustafa, Mohamed A.
Powiązania:
https://bibliotekanauki.pl/articles/2051854.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
stereophotogrammetry
noise-floor
vision-based tracking
displacement
uncertainty
accuracy
Opis:
This work proposes a systematic assessment of stereophotogrammetry and noise-floor tests to characterize and quantify the uncertainty and accuracy of a vision-based tracking system. Two stereophotogrammetry sets with different configurations, i.e., some images are designed and their sensitivity is quantified based on several assessments. The first assessment evaluates the image coordinates, stereo angle and reconstruction errors resulting from the stereophotogrammetry procedure, and the second assessment expresses the uncertainty from the variance and bias errors measured from the noise-floor test. These two assessments quantify the uncertainty, while the accuracy of the vision-based tracking system is assessed from three quasi-static tests on a small-scaled specimen. The difference in each stereophotogrammetry set and configuration, as indicated by the stereophotogrammetry and noise-floor assessment, leads to a significant result hat the first stereophotogrammetry set measures the RMSE of 3.6 mm while the second set identifies only 1.6 mm of RMSE. The results of this work recommend a careful and systematic assessment of stereophotogrammetry and noise-floor test results to quantify the uncertainty before the real test to achieve a high displacement accuracy of the vision-based tracking system.
Źródło:
Metrology and Measurement Systems; 2022, 29, 1; 75-92
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of a vision‐based autonomous turret
Autorzy:
Louali, Rabah
Negadi, Djilali
Hamadouche, Rabah
Nemra, Abdelkrim
Powiązania:
https://bibliotekanauki.pl/articles/27314239.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
autonomous turret
stepper motor
DC motor
vision based control
Tracking‐Learning‐Detection algorithm
TLD algorithm
Kalman based visual tracking
Opis:
This article describes the hardware and software de‐ sign of a vision‐based autonomous turret system. A two degree of freedom (2 DOF) turret platform is designed to carry a cannon equipped with an embedded camera and actuated by stepper motors or direct current motors. The turret system includes a central calculator running a visual detection and tracking solution, and a microcon‐ troller, responsible for actuators control. The Tracking‐ Learning‐Detection (TLD) algorithm is implemented for target detection and tracking. Furthermore, a Kalman filter algorithm is implemented to continue the tracking in case of occlusion. The performances of the designed turret, regarding response time, accuracy and the execu‐ tion time of its main tasks, are evaluated. In addition, an experimental scenario was performed for real‐time autonomous detection and tracking of a moving target.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 4; 72--77
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies