Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vision transformer" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
An efficient pedestrian attribute recognition system under challenging conditions
Autorzy:
Nguyen, Ha X.
Hoang, Dong N.
Tran, Tuan A.
Dang, Tuan M.
Powiązania:
https://bibliotekanauki.pl/articles/24200444.pdf
Data publikacji:
2023
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Instytut Informatyki Technicznej
Tematy:
pedestrian attribute recognition
Deep Learning
vision transformer
security surveil-lance
Opis:
In this work, an efficient pedestrian attribute recognition system is introduced. The system is based on a novel processing pipeline that combines the best-performing attribute extraction model with an efficient attribute filtering algorithm using keypoints of human pose. The attribute extraction models are developed based on several state-of-the-art deep networks via transfer learning techniques, including ResNet50, Swin-transformer, and ConvNeXt. Pre-trained models of these networks are fine-tuned using the Ensemble Pedestrian Attribute Recognition (EPAR) dataset. Several optimization techniques, including the advanced optimizer Adam with Decoupled Weight Decay Regularization (AdamW), Random Erasing (RE), and weighted loss functions, are adopted to solve issues of data unbalancing or challenging conditions like partial and occluded bodies. Experimental evaluations are performed via EPAR that contains 26 993 images of 1477 person IDs, most of which are in challenging conditions. The results show that the ConvNeXt-v2-B outperforms other networks; mean accuracy (mA) reaches 85.57%, and other indices are also the highest. The addition of AdamW or RE can improve accuracy by 1-2%. The use of new loss functions can solve the issue of data unbalancing, in which the accuracy of data-less attributes improves by a maximum of 14% in the best case. Significantly, when the attribute filtering algorithm is applied, the results are dramatically improved, and mA reaches an excellent value of 94.85%. Utilizing the state-of-the-art attribute extraction model with optimization techniques on the large-scale and diverse dataset and attribute filtering has shown a good approach and thus has a high potential for practical applications.
Źródło:
Machine Graphics & Vision; 2023, 32, 2; 3--18
1230-0535
2720-250X
Pojawia się w:
Machine Graphics & Vision
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exploring automated object detection methods for manholes using classical computer vision and deep learning
Autorzy:
Rao, Shika
Mitnala, Nitya
Powiązania:
https://bibliotekanauki.pl/articles/2204261.pdf
Data publikacji:
2023
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Instytut Informatyki Technicznej
Tematy:
computer vision
object detection
size detection
convolutional neural networks
vision transformer
autonomous vehicles
Opis:
Open, broken, and improperly closed manholes can pose problems for autonomous vehicles and thus need to be included in obstacle avoidance and lane-changing algorithms. In this work, we propose and compare multiple approaches for manhole localization and classification like classical computer vision, convolutional neural networks like YOLOv3 and YOLOv3-Tiny, and vision transformers like YOLOS and ViT. These are analyzed for speed, computational complexity, and accuracy in order to determine the model that can be used with autonomous vehicles. In addition, we propose a size detection pipeline using classical computer vision to determine the size of the hole in an improperly closed manhole with respect to the manhole itself. The evaluation of the data showed that convolutional neural networks are currently better for this task, but vision transformers seem promising.
Źródło:
Machine Graphics & Vision; 2023, 32, 1; 25--53
1230-0535
2720-250X
Pojawia się w:
Machine Graphics & Vision
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies