Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vertex-connectivity" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Cospectral Pairs of Regular Graphs with Different Connectivity
Autorzy:
Haemers, Willem H.
Powiązania:
https://bibliotekanauki.pl/articles/31552242.pdf
Data publikacji:
2020-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph spectrum
vertex-connectivity
edge-connectivity
spectral characterization
Opis:
For vertex- and edge-connectivity we construct infinitely many pairs of regular graphs with the same spectrum, but with different connectivity.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 2; 577-584
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity
Autorzy:
Mazorodze, Jaya Percival
Mukwembi, Simon
Vetrík, Tomáš
Powiązania:
https://bibliotekanauki.pl/articles/31340463.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Gutman index
edge-Wiener index
vertex-connectivity
Opis:
The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of re- search on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity κ, where κ is a constant. Our results substantially generalize and extend known results in the area.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 867-876
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Erdős regular graphs of even degree
Autorzy:
Dobrynin, Andrey
Mel'nikov, Leonid
Pyatkin, Artem
Powiązania:
https://bibliotekanauki.pl/articles/743782.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex coloring
4-critical graph
circulant
regular graph
vertex connectivity
Opis:
In 1960, Dirac put forward the conjecture that r-connected 4-critical graphs exist for every r ≥ 3. In 1989, Erdös conjectured that for every r ≥ 3 there exist r-regular 4-critical graphs. A method for finding r-regular 4-critical graphs and the numbers of such graphs for r ≤ 10 have been reported in [6,7]. Results of a computer search for graphs of degree r = 12,14,16 are presented. All the graphs found are both r-regular and r-connected.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 2; 269-279
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The connectivity of domination dot-critical graphs with no critical vertices
Autorzy:
Furuya, Michitaka
Powiązania:
https://bibliotekanauki.pl/articles/30148712.pdf
Data publikacji:
2014-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dot-critical graph
critical vertex
connectivity
Opis:
An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number. In A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745, Chen and Shiu constructed for each even integer k ≥ 4 infinitely many k-dot-critical graphs G with no critical vertices and κ(G) = 1. In this paper, we refine their result and construct for integers k ≥ 4 and l ≥ 1 infinitely many k-dot-critical graphs G with no critical vertices, κ(G) = 1 and λ(G) = l. Furthermore, we prove that every 3-dot- critical graph with no critical vertices is 3-connected, and it is best possible.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 4; 683-690
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Vertex-Rainbow Index of A Graph
Autorzy:
Mao, Yaping
Powiązania:
https://bibliotekanauki.pl/articles/31340818.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-coloring
connectivity
vertex-rainbow S-tree
vertex- rainbow index
Nordhaus-Gaddum type
Opis:
The k-rainbow index rxk(G) of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G) in this paper. In this paper, sharp upper and lower bounds of rvxk(G) are given for a connected graph G of order n, that is, 0 ≤ rvxk(G) ≤ n − 2. We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph G of order n, and show that rvx3(G) + rvx3(Ḡ) = 4 for n = 4 and 2 ≤ rvx3(G) + rvx3(Ḡ) ≤ n − 1 for n ≥ 5. Let t(n, k, ℓ) denote the minimal size of a connected graph G of order n with rvxk(G) ≤ ℓ, where 2 ≤ ℓ ≤ n − 2 and 2 ≤ k ≤ n. Upper and lower bounds on t(n, k, ℓ) are also obtained.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 669-681
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies