Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "vertebrates evolution" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The ancestry and cumulative evolution of immune reactions
Autorzy:
Dzik, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/1040306.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
signal transduction
invertebrates
receptors
cytokines
antigen presentation
nitric oxide
phagocytosis
evolution
innate immunity
complement
antibody-based immunity
superoxide
protoza
vertebrates
sponges
Opis:
The last two decades of study enriched greatly our knowledge of how the immune system originated and the sophisticated immune mechanisms of today's vertebrates and invertebrates developed. Even unicellular organisms possess mechanisms for pathogen destruction and self recognition. The ability to distinguish self from non-self is a prerequisite for recognition of sexual compatibility and ensuring survival. Molecules involved in these processes resemble those found in the phagocytic cells of higher organisms. Recognition of bacteria by scavenger receptors induces phagocytosis or endocytosis. The phagocytic mechanisms characterizing the amoeboid protozoans developed further during the evolution towards innate immunity. The scavenger receptor cysteine-rich domain SRCR is encoded in the genomes from the most primitive sponges to mammals. The immune system of sponges comprises signal transduction molecules which occur in higher metazoans as well. Sponges already possess recognition systems for pathogenic bacteria and fungi, based on membrane receptors (a lipopolysaccharide-interacting protein, a cell surface receptor recognizing β(1 → 3)-d-glucans of fungi). Perforin-like molecules and lysozymes are involved, among others, in defense in sponges. Reactive oxygen and nitrogen species function in the immunity of early metazoan. Genes encoding the family of reactive oxygen-generating NADPH oxidases (Noxes) are found in a variety of protists and plants. The NO synthases of cnidarians, mollusks, and chordates are conserved with respect to the mammalian NOS. The antimicrobial peptides of protozoans, amoebapores, are structural and functional analogs of the natural killer cell peptide, NK-lysin, of vertebrates. An ancestral S-type lectin has been found in sponges. Opsonizing properties of lectins and the ability to agglutinate cells justify their classification as primitive recognition molecules. Invertebrate cytokines are not homologous to those of vertebrate, and their functional convergence was presumably enabled by the general similarity of the lectin-like recognition domain three-dimensional structure. Sponges contain molecules with SCR/CCP domains that show high homology to the mammalian regulators of complement activation (RCA family). A multi-component complement system comprising at least the central molecule of the complement system, C3, Factor B, and MASP developed in the cnidarians and evolved into the multilevel cascade engaged in innate and acquired immunity of vertebrates. The adaptive immune system of mammals is also deeply rooted in the metazoan evolution. Some its precursors have been traced as deep as in sponges, namely, two classes of receptors that comprise Ig-like domains, the receptor tyrosine kinases (RTK), and the non-enzymic sponge adhesion molecules (SAM). The antibody-based immune system defined by the presence of the major histocompatibility complex (MHC), T-cell receptor (TCR), B-cell receptor (BCR) or recombination activating genes (RAGs) is known beginning from jawed fishes. However, genes closely resembling RAG1 and RAG2 have been uncovered in the genome of a see urchin. The ancestry of MHC gene remains unknown. Similarly, no homologue of the protein binding domain (PBD) in MHC molecules has been found in invertebrates. The pathway by which endogenous peptides are degraded for presentation with class I MHC molecules utilizes mechanisms similar to those involved in the normal turnover of intracellular proteins, apparently recruited to work also for the immune system. Several cDNAs coding for lysosomal enzymes, e.g., cathepsin, have been isolated from sponges. All chromosomal duplication events in the MHC region occurred after the origin of the agnathans but before the gnathostomes split from them. The V-domains of the subtype found in the receptors of T and B-cells are known from both agnathans and cephalochordates, although they do not rearrange. The rearrangement mechanism of the lymphocyte V-domains suggests its origin from a common ancestral domain existing before the divergence of the extant gnathostome classes. Activation-induced deaminase (AID) - homologous proteins have been found only in the gnathostomes. It appears thus that the adaptive immunity of vertebrates is a result of stepwise accumulation of small changes in molecules, cells and organs over almost half a billion years.
Źródło:
Acta Biochimica Polonica; 2010, 57, 4; 443-466
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular evolution of enolase
Autorzy:
Piast, Michał
Kustrzeba-Wójcicka, Irena
Matusiewicz, Małgorzata
Banaś, Teresa
Powiązania:
https://bibliotekanauki.pl/articles/1041439.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
concerted evolution
gene duplication
"birth and death" evolution
glycolysis
vertebrates evolution
enolase
Opis:
Enolase (EC 4.2.1.11) is an enzyme of the glycolytic pathway catalyzing the dehydratation reaction of 2-phosphoglycerate. In vertebrates the enzyme exists in three isoforms: α, β and γ. The amino-acid and nucleotide sequences deposited in the GenBank and SwissProt databases were subjected to analysis using the following bioinformatic programs: ClustalX, GeneDoc, MEGA2 and S.I.F.T. (sort intolerant from tolerant). Phylogenetic trees of enolases created with the use of the MEGA2 program show evolutionary relationships and functional diversity of the three isoforms of enolase in vertebrates. On the basis of calculations and the phylogenetic trees it can be concluded that vertebrate enolase has evolved according to the "birth and death" model of evolution. An analysis of amino acid sequences of enolases: non-neuronal (NNE), neuron specific (NSE) and muscle specific (MSE) using the S.I.F.T. program indicated non-uniform number of possible substitutions. Tolerated substitutions occur most frequently in α-enolase, while the lowest number of substitutions has accumulated in γ-enolase, which may suggest that it is the most recently evolved isoenzyme of enolase in vertebrates.
Źródło:
Acta Biochimica Polonica; 2005, 52, 2; 507-513
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies