Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "varepsilon-insensitivity" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
An ε-Insensitive Approach to Fuzzy Clustering
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908067.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
programowanie
metoda grupowania
fuzzy clustering
fuzzy c-means
robust methods
varepsilon-insensitivity
fuzzy c-medians
Opis:
Fuzzy clustering can be helpful in finding natural vague boundaries in data. The fuzzy c-means method is one of the most popular clustering methods based on minimization of a criterion function. However, one of the greatest disadvantages of this method is its sensitivity to the presence of noise and outliers in the data. The present paper introduces a new varepsilon-insensitive Fuzzy C-Means (varepsilonFCM) clustering algorithm. As a special case, this algorithm includes the well-known Fuzzy C-Medians method (FCMED). The performance of the new clustering algorithm is experimentally compared with the Fuzzy C-Means (FCM) method using synthetic data with outliers and heavy-tailed, overlapped groups of the data.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 4; 993-1007
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies