Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uniform monotonicity" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Geometric properties of Orlicz spaces equipped with \(p\)-Amemiya norms − results and open questions
Autorzy:
Wisła, Marek
Powiązania:
https://bibliotekanauki.pl/articles/746287.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
rotundity
non-squareness
uniform monotonicity
dominated best approximation problem
Amemiya type norm
Opis:
The classical Orlicz and Luxemburg norms generated by an Orlicz function \(\Phi\) can be defined with the use of the Amemiya formula [H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. 11 (2000), no. 4, 573-585]. Moreover, in this article Hudzik and Maligranda suggested investigating a family of p-Amemiya norms defined by the formula \(\|x\|_{\Phi,p}=\inf_{k>0} \frac{1}{k} (1+I_\Phi^p(kx))^{1/p}\), where \(1\le p\le\infty\) (under the convention: \((1+u^\infty)^{1/\infty}=\lim_{p\to\infty}(1+u^p)^{1/p}=\max{1,u}\) for all \(u\ge 0\)). Based on this idea, a number of papers have been published in the past few years. In this paper, we present some major results concerning the geometric properties of Orlicz spaces equipped with p-Amemiya norms. In the last section, a more general case of Amemiya type norms is investigated. A few open questions concerning this theory will be stated as well.
Źródło:
Commentationes Mathematicae; 2015, 55, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the uniform convergence of sine, cosine and double sine-cosine series
Autorzy:
Duzinkiewicz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/729644.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sine series
cosine series
double sine-cosine series
uniform convergence
generalized monotonicity
Opis:
In this paper we define new classes of sequences GM(β,r) and DGM(α,β,γ,r). Using these classes we generalize and extend the P. Kórus results concerning the uniform convergence of sine, cosine and double sine-cosine series, respectively.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2016, 36, 1; 87-116
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals
Autorzy:
Czerwińska, Malgorzata M.
Kaminska, Anna H.
Powiązania:
https://bibliotekanauki.pl/articles/746224.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Symmetric spaces of measurable operators
unitary matrix spaces
rearrangement invariant spaces
k-extreme points
k-convexity
complex extreme points
complex convexity
monotonicity
(local) uniform (complex and real) convexity
p-convexity
Opis:
This is a review article of geometric properties of noncommutative symmetric spaces of measurable operators \(E(\mathcal{M},\tau)\), where \(\mathcal{M}\) is a semifinite von Neumann algebra with a faithful, normal, semifinite trace \(\tau\), and \(E\) is a symmetric function space. If \(E\subset c_0\) is a symmetric sequence space then the analogous properties in the unitary matrix ideals \(C_E\) are also presented. In the preliminaries we provide basic definitions and concepts illustrated by some examples and occasional proofs. In particular we list and discuss the properties of general singular value function, submajorization in the sense of Hardy, Littlewood and Pólya, Köthe duality, the spaces \(L_p\left(\mathcal{M},\tau\right)\), \(1\leq p < \infty\), the identification of \(C_E\) and \(G(B(H), \operatorname{tr})\) for some symmetric function space \(G\), the commutative case when \(E\) is identified with \(E(\mathcal{N}, \tau)\) for \(\mathcal{N}\) isometric to \(L_\infty\) with the standard integral trace, trace preserving \(*\)-isomorphisms between \(E\) and a \(*\)-subalgebra of \(E\left(\mathcal{M},\tau\right)\), and a general method for removing the assumption of non-atomicity of \(\mathcal{M}\). The main results on geometric properties are given in separate sections. We present the results on (complex) extreme points, (complex) strict convexity, strong extreme points and midpoint local uniform convexity, \(k\)-extreme points and \(k\)-convexity, (complex or local) uniform convexity, smoothness and strong smoothness, (strongly) exposed points, (uniform) Kadec−Klee properties, Banach−Saks properties, Radon−Nikodym property and stability in the sense of Krivine−Maurey. We also state some open problems.
Źródło:
Commentationes Mathematicae; 2017, 57, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies