Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uniform decay rates" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Uniform energy decay rates of hyperbolic equations with nonlinear boundary and interior dissipation
Autorzy:
Lasiecka, I.
Triggiani, R.
Powiązania:
https://bibliotekanauki.pl/articles/970305.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
non-linear hyperbolic equations
uniform energy decay rates
Opis:
We consider the problem of uniform stabilization of nonlinear hyperbolic equations, epitomized by the following three canonical dynamics: (1) the wave equation in the natural state space L2(Ω) x H^-1(Ω), under nonlinear (and non-local) boundary dissipation in the Dirichlet B.C., as well as nonlinear internal damping; (2) a corresponding Kirchhoff equation in the natural state space [wzór), under nonlinear boundary dissipation in the 'moment' B.C. as well as nonlinear internal damping; (3) the system of dynamic elasticity corresponding to (1). All three dynamics possess a strong, hard-to-show 'boundary → boundary' regularity property, which was proved, also by invoking a micro-local argument, in Lasiecka and Triggiani (2004, 2008). This is by no means a general property of hyperbolic or hyperbolic-like dynamics (Lasiecka and Triggiani, 2003, 2008). The present paper, as a continuation of Lasiecka and Triggiani (2008), seeks to take advantage of this strong regularity property in the case of those PDE dynamics where it holds true. Thus, under the above boundary → boundary regularity, as well as exact controllability of the corresponding linear model, uniform stabilization of nonlinear models is obtained under minimal nonlinear assumptions, provided that a corresponding unique continuation property holds true. The treatment of the present paper is cast in the abstract setting (Lasiecka, 1989, 2001; Lasiecka and Triggiani, 2000, Ch. 7, 2003, 2008), which is proper for these hyperbolic dynamics and recovers the results of Lasiecka and Triggiani (2003, 2008) in the absence of the nonlinear interior damping, in particular in the linear case.
Źródło:
Control and Cybernetics; 2008, 37, 4; 935-969
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniform stabilization of the quasi-linear Kirchhoff wave equation with a nonlinear boundary feedback
Autorzy:
Lasiecka, I.
Powiązania:
https://bibliotekanauki.pl/articles/206039.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
quasi-liniowe równanie falowe Kirchhoffa
a priori bounds
global existence
nonlinear damping
quasilinear Kirchhoff wave equation
uniform decay rates
Opis:
An n-dimensional quasi-linear wave equation defined on bounded domain Omega with Neumann boundary conditions imposed on the boundary Gamma and with a nonlinear boundary feedback acting on a portion of the boundary [Gamma sup 1 is a subset of Gamma] is considered. Global existence, uniqueness and uniform decay rates are established for the model, under the assumption that the H[sup 1](Omega) x L[sub 2](Omega) norms of the initial data are sufficiently small. The result presented in this paper extends these obtained recently in Lasiecka and Ong (1999), where the Dirichlet boundary conditions are imposed on the uncontrolled portion of the boundary Gamma[sub o] = Gamma \ [closure of a set Gamma sub 1], and the two portions of the boundary are assumed disjoint, i.e. [... ]. The goal of this paper is to remove this restriction. This is achieved by considering the "pure" Neumann problem subject to convexity assumption imposed on Gamma[sub o]. \@eng\\
Źródło:
Control and Cybernetics; 2000, 29, 1; 179-197
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies