Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "turbine disk" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Design and Strength Analysis of Curved-Root Concept for Compressor Rotor Blade in Gas Turbine
Autorzy:
Wdowiński, W.
Szymczyk, E.
Jachimowicz, J.
Moneta, G.
Powiązania:
https://bibliotekanauki.pl/articles/97975.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
finite element method
turbine engine
rotor disk
rotor blades
blade-disc connection
shape optimization
Opis:
The motivation of the article is fatigue and fretting issue of the compressor rotor blades and disks. These phenomena can be caused by high contact pressures leading to fretting occurring on contact faces in the lock (blade-disk connection, attachment of the blade to the disk). Additionally, geometrical notches and high cyclic loading can initiate cracks and lead to engine failures. The paper presents finite element static and modal analyses of the axial compressor 3rd for the original trapezoidal/dovetail lock geometry and its two modifications (new lock concepts) to optimize the stress state of the disk-blade assembly. The cyclic symmetry formulation was used to reduce modelling and computational effort.
Źródło:
Fatigue of Aircraft Structures; 2017, 9; 137-155
2081-7738
2300-7591
Pojawia się w:
Fatigue of Aircraft Structures
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of Manufacturing Tolerances on Stress in a Turbine Blade Fir-Tree Root
Autorzy:
Moneta, Grzegorz
Jachimowicz, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/2105140.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Lotnictwa
Tematy:
fir-tree root
turbine
lock
blade
disk
manufacturing tolerances
Monte-Carlo simulations
Six Sigma
Low Cycle Fatigue
Design of Experiment
Opis:
Low Cycle Fatigue (LCF) is one of most common mechanisms behind turbine blade failures. The reason is high stress concentration in notch areas, like fir-tree root groves, which can cause cyclic stress beyond the safe threshold. The stress levels strictly depend on the manufacturing accuracy of the fir-tree lock (for both fitted together: blade root and disk groove). The probabilistic study aimed at determination of stress was performed using Finite Element Method (FEM) simulation on a population of 1000 turbine models (disk + blades +friction dampers), where fir-tree lock dimensions were sampled according to the normal distribution, within limits specified in the documentation. The studies were performed for different manufacturing quality levels: 3-Sigma, 6-Sigma and 3-Sigma with tolerance ranges reduced twice. Based on the results, the probabilistic distributions, probabilities and expected ranges of values could be determined for: material plastification, stress, strain, LCF lifetime, etc. The study has shown how each tooth of the root is loaded and how wide a stress range should be expected in each groove. That gives information on how the definition of tolerances should be modified to make the construction more optimal, more robust, with lower likelihood of damage, taking into account the cost-quality balance. It also shows how the Six Sigma philosophy can improve the safety of the construction, its repeatability and predictability. Additionally, the presented numerical study is a few orders of magnitude more cost- and time-effective than experiment.
Źródło:
Fatigue of Aircraft Structures; 2020, 12; 92--101
2081-7738
2300-7591
Pojawia się w:
Fatigue of Aircraft Structures
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of cooling air mass flux variation on the convective heat transfer coefficient of HPT rotor disk
Autorzy:
Domański, R.
Jedliński, K.
Powiązania:
https://bibliotekanauki.pl/articles/243193.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
CFD
Fluent
High Pressure Turbine
Rotor Disk
convective heat transfer coefficient
Opis:
The paper is focused on the convective heat transfer phenomena on the High Pressure Turbine (HPT) rotor disk wall. The disk is a part of PW6000 turbojet engine (designed by Pratt & Whitney Company) and is a base of the 1st stage of HPT blades having very high temperature (combustion gases leaving combustion chamber have temperature around 1800 K). The analyzed disk is cooled by the air taken from one of the compressor's stages. The air gets to the gap between HPT disk and mini disk through discrete pump holes and then divides into two streams. One of them is used to decrease temperature of turbine blades and the second one is directed to the sequent turbine stages. Numerical analysis (made in Fluent) is based on the two dimensional aerodynamic model (in steady state) which is the cross section of the real geometry. There are three different sets of boundary conditions analyzed. Each of them has the same flow splits (40% of air is used to cool turbine blades and 60% gets to the next turbine stage) and all settings except cooling air mass flow on the inlet. Convective heat transfer coefficients are calculated using different method then proposed by Fluent (WFHTC and SHTC options give wrong results in this case). Coefficients are presented along disk wall and are compared with Fluent calculation methods.
Źródło:
Journal of KONES; 2007, 14, 2; 107-114
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability analysis of multi-site damage with failure dependency of the turbine based on flow-thermal-solid coupling analysis and the Monte Carlo validated simulations
Autorzy:
Qian, Wenxue
Zeng, Xianhai
Huang, Shuanghui
Yin, Xiaowei
Powiązania:
https://bibliotekanauki.pl/articles/27312780.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
flow-thermal-solid coupling analysis
Monte Carlo simulation
turbine disk
multiple loads
probabilistic modeling
system reliability with failure dependency
Opis:
The harsh environmental loads may lead to strength failure in the turbine in an aero-engine. To accurately assess the strength reliability of the turbine under multiple loads, the stress distributions of 41 danger sites of a turbine under thermal, centrifugal, and pneumatic loads were determined by the flow-thermal-solid coupling analysis using ANSYS. Second, based on the flow-thermal-solid coupling analysis and response surface method, the probabilistic analysis model of stress at the danger site was established. And the probabilistic distribution of stress was determined by sampling and hypothesis testing. Finally, the reliability model of the turbine with multi-site damage and failure dependency was established, by which a reliability of 0.99802 was calculated. And the actual reliability of the turbine was 0.99626 determined by the Monte Carlo simulations, which verified the model in precision. The results indicated that the reliability model has a high efficiency and higher precision than the traditional reliability model with failure independence.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 168771
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies