Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "traffic signal system" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
An adaptative system for signposted intersection control : ASSINC
Autorzy:
Elkosantini, S.
Mnif, F.
Chabchoub, H.
Powiązania:
https://bibliotekanauki.pl/articles/91830.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
adaptative system
signposted
ASSINC
case-based reasoning
CBR
traffic signal
traffic
Opis:
This paper deals with the development of intelligent and adaptative system for signposted intersection control. The role of such systems is to manage the existing infrastructure to ease congestion and respond to crises. The proposed system, named ASSINC, try to insure a more fluid traffic flow. ASSINC is based on case based reasoning (CBR) approach and fuzzy logic to consider imprecise information taken from some detector. In fact, the CBR is always considered as a cyclic paradigm of Artificial Intelligence and that is used to learning and problem solving based on past experience. The developed system is tested on a virtual junction and the obtained results are discussed.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 1; 21-29
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of traffic signal system anomalies for environment tests of autonomous vehicles
Autorzy:
Lengyel, H.
Szalay, Z.
Powiązania:
https://bibliotekanauki.pl/articles/112021.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Menedżerów Jakości i Produkcji
Tematy:
classification
traffic signal system
anomalies
autonomous vehicles
test environment
pojazd autonomiczny
znaki drogowe
sygnalizacja świetlna
Opis:
In the future there will be a lot of changes and development concerning autonomous transport that will affect all participants of transport. There are still difficulties in organizing transport, but with the introduction of autonomous vehicles more challenges can be expected. Recognizing and tracking horizontal and vertical signs can cause a difficulties for drivers and, later, for autonomous systems. Environmental conditions, deformity and quality affect the perception of signals. The correct recognition results in safe travelling for everyone on the roads. Traffic signs are designed for people that is why the recognition process is harder for the machines. However, nowadays some developers try to create a traffic sign that autonomous vehicles can use. Computer identification needs further development, as it is necessary to consider cases where traffic signs are deformed or not properly placed. In the following investigation, the advantages and disadvantages of the different perception methods and their possibilities were gathered. A methodology for the classification of horizontal and vertical traffic signs anomalies that may help in designing better testing and validation environments for traffic sign recognition systems in the future was also proposed.
Źródło:
Production Engineering Archives; 2018, 19; 43-47
2353-5156
2353-7779
Pojawia się w:
Production Engineering Archives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic algorithm application for optimizing traffic signal timing reflecting vehicle emission intensity
Autorzy:
Hai, Dinh Tuan
Manh, Do Van
Nhat, Nguyen Minh
Powiązania:
https://bibliotekanauki.pl/articles/2098075.pdf
Data publikacji:
2021
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
traffic signal optimization
heuristic solution
genetic algorithm
vehicle exhaust emission
intelligent transport system
optymalizacja sygnalizacji drogowej
rozwiązanie heurystyczne
algorytm genetyczny
emisja spalin pojazdu
inteligentny system transportowy
Opis:
Urbanization has created continuous growth in transportation demand, leading to serious issues, including infrastructure overload, disrupted traffic flow, and associated vehicular emissions. As a result, resolving these problems has become one of the primary missions of governments worldwide. The optimization of the traffic signal timing system is considered a promising approach to overcoming the negative consequences of increasing vehicle volume. In metropolises, oversaturated intersections, where the traffic density and vehicle exhaust emission levels are significant, have been considered as the priority to target. Several scientists have attempted to design traffic lights with the most appropriate timing. However, the majority of previous studies have not formed a comprehensive evaluation of essential factors, especially regarding the appropriate weighting of vehicle emission parameters. By assessing the all-inclusive relationship of critical elements with an emphasis on vehicle exhaust emissions, a performance index model using a genetic algorithm (GA) is established in this paper, demonstrated by data from a case study in Taiwan.
Źródło:
Transport Problems; 2021, 16, 1; 5--16
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
AI-based Yolo v4 intelligent traffic light control system
Autorzy:
Prathap, Boppuru Rudra
Kumar, Kukatlapalli Pradeep
Chowdary, Cherukuri Ravindranath
Hussain, Javid
Powiązania:
https://bibliotekanauki.pl/articles/27314354.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
traffic jam
traffic light system
traffic management
intelligent monitoring
signal switching algorithm
artificial intelligence
Opis:
With the growing number of city vehicles, traffic management is becoming a persistent challenge. Traffic bottlenecks cause significant disturbances in our everyday lives and raise stress levels, negatively impacting the environment by increasing carbon emissions. Due to the population increase, megacities are experiencing severe challenges and significant delays in their day-to-day activities related to transportation. An intelligent traffic management system is required to assess traffic density regularly and take appropriate action. Even though separate lanes are available for various vehicle types, wait times for commuters at traffic signal points are not reduced. The proposed methodology employs artificial intelligence to collect live images from signals to address this issue in the current system. This approach calculates traffic density, utilizing the image processing technique YOLOv4 for effective traffic congestion management. The YOLOv4 algorithm produces better accuracy in the detection of multiple vehicles. Intelligent monitoring technology uses a signal-switching algorithm at signal intersections to coordinate time distribution and alleviate traffic congestion, resulting in shorter vehicle waiting times.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 4; 53--61
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies