- Tytuł:
- Total Roman Reinforcement in Graphs
- Autorzy:
-
Ahangar, H. Abdollahzadeh
Amjadi, J.
Chellali, M.
Nazari-Moghaddam, S.
Sheikholeslami, S.M. - Powiązania:
- https://bibliotekanauki.pl/articles/31343238.pdf
- Data publikacji:
- 2019-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
total Roman domination number
total Roman reinforcement number - Opis:
- A total Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The minimum weight of a total Roman dominating function on a graph G is called the total Roman domination number of G. The total Roman reinforcement number rtR(G) of a graph G is the minimum number of edges that must be added to G in order to decrease the total Roman domination number. In this paper, we investigate the proper- ties of total Roman reinforcement number in graphs, and we present some sharp bounds for rtR(G). Moreover, we show that the decision problem for total Roman reinforcement is NP-hard for bipartite graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 787-803
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki