- Tytuł:
- The total {k}-domatic number of digraphs
- Autorzy:
-
Sheikholeslami, Seyed
Volkmann, Lutz - Powiązania:
- https://bibliotekanauki.pl/articles/743233.pdf
- Data publikacji:
- 2012
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
digraph
total {k}-dominating function
total {k}-domination number
total {k}-domatic number - Opis:
- For a positive integer k, a total {k}-dominating function of a digraph D is a function f from the vertex set V(D) to the set {0,1,2, ...,k} such that for any vertex v ∈ V(D), the condition $∑_{u ∈ N^{ -}(v)}f(u) ≥ k$ is fulfilled, where N¯(v) consists of all vertices of D from which arcs go into v. A set ${f₁,f₂, ...,f_d}$ of total {k}-dominating functions of D with the property that $∑_{i = 1}^d f_i(v) ≤ k$ for each v ∈ V(D), is called a total {k}-dominating family (of functions) on D. The maximum number of functions in a total {k}-dominating family on D is the total {k}-domatic number of D, denoted by $dₜ^{{k}}(D)$. Note that $dₜ^{{1}}(D)$ is the classic total domatic number $dₜ(D)$. In this paper we initiate the study of the total {k}-domatic number in digraphs, and we present some bounds for $dₜ^{{k}}(D)$. Some of our results are extensions of well-know properties of the total domatic number of digraphs and the total {k}-domatic number of graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2012, 32, 3; 461-471
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki