- Tytuł:
- Relatively minimal extensions of topological flows
- Autorzy:
- Mentzen, Mieczysław
- Powiązania:
- https://bibliotekanauki.pl/articles/965711.pdf
- Data publikacji:
- 2000
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
factors
flows
topological dynamics - Opis:
- The concept of relatively minimal (rel. min.) extensions of topological flows is introduced. Several generalizations of properties of minimal extensions are shown. In particular the following extensions are rel. min.: distal point transitive, inverse limits of rel. min., superpositions of rel. min. Any proximal extension of a flow Y with a dense set of almost periodic (a.p.) points contains a unique subflow which is a relatively minimal extension of Y. All proximal and distal factors of a point transitive flow with a dense set of a.p. points are rel. min. In the class of point transitive flows with a dense set of a.p. points, distal open extensions are disjoint from all proximal extensions. An example of a relatively minimal point transitive extension determined by a cocycle which is a coboundary in the measure-theoretic sense is given.
- Źródło:
-
Colloquium Mathematicum; 2000, 84/85, 1; 51-65
0010-1354 - Pojawia się w:
- Colloquium Mathematicum
- Dostawca treści:
- Biblioteka Nauki