Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time series forecasting" wg kryterium: Temat


Tytuł:
Application of modern portfolio theory to the Russian state bond market
Autorzy:
Pervozvanskij, A.
Barinov, V.
Kozlova, O.
Powiązania:
https://bibliotekanauki.pl/articles/206658.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja
teoria decyzji
forecasting
forecasting errors
forecasting theory
investment
portfolio optimization
Russian state bond market
statistical indices
time series
Opis:
The behaviour of the Russian state bond market is analyzed. Attention is mainly paid to short-term fluctuations and efficiency of short-term investments. Analysis of return time series has shown that there exists a significant autocorrelation, and that distribution of random fluctuations is non-Gaussian. It predetermines a choice of forecasting schemes. The most efficient ones appear to be non-linear. The efficiency was checked not only by the traditional statistical indices by direct numerical experiments where various types of predictors were used as basic elements of decision rules. The decision algorithms have included the solution to the modified optimal portfolio problem where the forecasts were used as expected returns and the covariance matrix was estimated via forecasting errors.
Źródło:
Control and Cybernetics; 1999, 28, 4; 799-810
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe prognozowanie szeregów czasowych metodą przesuwanego okna danych
Neural forecasting of time series by means of the moving data window technique
Autorzy:
Morajda, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/415611.pdf
Data publikacji:
2007
Wydawca:
Małopolska Wyższa Szkoła Ekonomiczna w Tarnowie
Tematy:
szeregi czasowe
sieci neuronowe
prognozowanie
time series
neural networks
forecasting
Opis:
W artykule zaprezentowano opartą na sieciach neuronowych metodę analizy i prognozowania szeregów czasowych, wykorzystującą technikę przesuwanego okna danych. Przedstawiono badania zastosowania tej metody dla szeregu czasowego cen detalicznych benzyny w USA. Dokonano oceny efektywności metody oraz porównano ją z wybranymi klasycznymi narzędziami analizy szeregów czasowych.
The paper outlines a method of time series analysis and forecasting based on neural networks, which utilises a moving data window technique. The research on the application of the method for time series has been described with reference to retail prices of gas oline in the USA. The effectiveness of the method has been evaluated and compared with selected classical tools of time series analysis.
Źródło:
Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie; 2007, 1(10); 189-199
1506-2635
Pojawia się w:
Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Długoterminowa prognoza mocy szczytowej dla KSE
The long-term forecast of elektricity consumption in Poland
Autorzy:
Popławski, T.
Dąsal, K.
Łyp, J.
Powiązania:
https://bibliotekanauki.pl/articles/282784.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
prognozowanie w elektroenergetyce
szeregi czasowe
rozkład kanoniczny
Long-term load forecasting in electric power engineering
time series
canonical distribution
Opis:
Charakterystyczną cechą systemu elektroenergetycznego jest jego ciągła zmienność. W celu poprawnego prowadzenia eksploatacji systemu elektroenergetycznego jak również planowania jego rozwoju niezbędne jest wykonywanie prognoz elektroenergetycznych. Wykonanie poprawnej prognozy dla systemu jest zadaniem niełatwym i wymagającym dużego doświadczenia, wiedzy i wyczucia. Aby w sposób świadomy móc regulować i przewidywać procesy zachodzące w systemie elektroenergetycznym niezbędne są prace z dziedziny analizy i prognozy obciążeń elektroenergetycznych. W artykule przedstawiono nowy model prognostyczny oparty o rozkład kanoniczny wektora zmiennych losowych. Jest to nowa metoda prognostyczna, w wyniku której można otrzymać długoterminowe prognozy mocy szczytowej dla KSE.
The characteristic feature of a power engineering system is its constant variability. In order to operate a power engineering system, as well as to plan its development it is necessary to carry out forecasts. Working out a correct forecast is an uneasy task that requires a lot of experience, knowledge and intuition. In order to be able to control and foresee the processes that occur in a power engineering system it is necessary to undertake research in the field of analyses of power loads. In the paper a new forecasting model, based on the canonical distribution of a vector of random variables, has been presented. It is a new forecasting method, able to predict long-term forecasts on peak power load of power engineering system in Poland.
Źródło:
Polityka Energetyczna; 2009, T. 12, z. 2/2; 497-510
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exponential smoothing and resampling techniques in time series prediction
Autorzy:
Neves, Maria
Cordeiro, Clara
Powiązania:
https://bibliotekanauki.pl/articles/729996.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
time series
bootstrap
exponential smoothing
forecasting
accuracy measures
Opis:
Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are based on the concept of exponential smoothing. There are a variety of methods that fall into the exponential smoothing family, each having the property that forecasts are weighted combinations of past observations. But time series analysis needs proper statistical modeling. The model that better describes the behavior of the series in study can be crucial in obtaining 'good' forecasts. Departures from the true underlying distribution can adversely affect those forecasts. Resampling techniques have been considered in many situations to overcome that difficulty. For time series, several authors have proposed bootstrap methodologies. Here we will present an automatic procedure built in R language that first selects the best exponential smoothing model (among a set of possibilities) for fitting the data, followed by a bootstrap approach for obtaining forecasts. A real data set has been used to illustrate the performance of the proposed procedure.
Źródło:
Discussiones Mathematicae Probability and Statistics; 2010, 30, 1; 87-101
1509-9423
Pojawia się w:
Discussiones Mathematicae Probability and Statistics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie modelu Wintersa do prognozowania jakości powietrza powiatu kędzierzyńsko-kozielskiego
Winters model - a study of applications for forecasting air quality in Kędzierzyn-Koźle county
Autorzy:
Szewczyk, M.
Tłuczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/339242.pdf
Data publikacji:
2010
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
analiza szeregów czasowych
prognozowanie
jakość powietrza
zarządzanie jakością powietrza
air quality management
air quality
forecasting
time-series analysis
Opis:
Powiat Kędzierzyn-Koźle jest jednostką administracji terytorialnej i samorządowej województwa opolskiego, w południowo-zachodniej Polsce. Istniejąca w Kędzierzynie-Koźlu sieć monitoringu powietrza obejmuje dziś tylko jedną w pełni automatyczną stację monitoringu. Emisja wielu zanieczyszczeń powietrza w Kędzierzynie-Koźlu zmniejszyła się znacząco od 1992 r., jednak od 2007 r. stężenie NO2 i pyłu zawieszonego PM10 w powietrzu się nie zmniejszyło. Zmniejszenie stężenia zanieczyszczeń powietrza jest nadal konieczne. Prognozowanie jakości powietrza to jeden z kluczowych elementów współczesnego zarządzania jakością powietrza. W artykule przedstawiono modele i prognozy stężenia SO2, NO2, CO, O3 i PM10, skonstruowane na podstawie danych, pozyskanych z automatycznej stacji monitoringu w Kędzierzynie-Koźlu.
Kędzierzyn-Koźle County is a unit of territorial administration and local government in Opole Voivodeship, south-western Poland. The existing air monitoring network in Kędzierzyn-Koźle comprises only one fully automatic monitoring station now. In Kędzierzyn-Koźle, emissions of many air pollutants have substantially decreased since 1992. However, since 2007, measured concentrations of NO2 and particulate matter PM10 in the air have not shown any improvement. The need to reduce air pollution still remains an important issue. Air quality forecasting is one of the core elements of contemporary air quality management. This paper presents models and forecasts of SO2, NO2, CO, O3 and PM10 concentrations based on data from automatic monitoring station in Kędzierzyn-Koźle.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2010, 10, 3; 283-296
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele neuronowe szeregów czasowych godzinowego poboru wody w osiedlach mieszkaniowych
Neural network models of hourly water demand time series in housing areas
Autorzy:
Siwoń, Z.
Cieżak, W.
Cieżak, J.
Powiązania:
https://bibliotekanauki.pl/articles/237770.pdf
Data publikacji:
2011
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
sztuczne sieci neuronowe
szeregi czasowe
prognozowanie
pobór wody
system wodociągowy
artificial neural networks
time series
forecasting
water demand
water supply system
Opis:
Omówiono wyniki modelowania i prognozowania szeregów czasowych poboru wody z miejskich sieci wodociągowych na potrzeby optymalnego sterowania procesem zaopatrzenia w wodę. Zaprezentowano wyniki weryfikacji sztucznych sieci neuronowych na przykładzie wydzielonego rejonu sieci wodociągowej w Kłodzku i we Wrocławiu. Przedstawiono analizę przydatności sztucznych sieci neuronowych w bieżącym prognozowaniu szeregów czasowych godzinowego poboru wody, która wykazała, że optymalne struktury sieci perceptronowych i liniowych nie są skomplikowane, co między innymi ułatwia proces ich douczania lub uczenia od nowa. W praktyce błędy prognozowania przy wykorzystaniu wielowarstwowych perceptronowych sieci neuronowych i liniowych sieci neuronowych okazały się porównywalne lub mniejsze od błędów predykcji wg modeli klasy ARIMA i metod wykładniczego wygładzania szeregów czasowych. Wykazano, że przydatność sieci o radialnych funkcjach bazowych do prognozowania dobowych histogramów godzinowego poboru wody była ograniczona i jednocześnie mniejsza niż sieci liniowych oraz perceptronowych.
The paper outlines the results of modeling and forecasting the water demand time series for the optimal control of water supply processes in municipal water supply systems. The results of verification of the artificial neural network models have been presented for a separate water supply subsystem in Klodzko and in Wroclaw. Analysis of the performance of artificial neural networks when used to develop current predictions of the time series for hourly water demand has revealed that the optimal structures of perceptron and linear networks are not very complicated, which facilitates the process of additional training or re-training. Practically, it has been found that forecasting produces comparable or smaller errors when focused on multilayer perceptron neural networks and linear neural networks than when based on the use of ARIMA models and exponential smoothing of the time series. Applicability of neural networks of radial base functions (RBF) to forecasting daily water demand histograms is limited, and lesser than that of linear and perceptron networks.
Źródło:
Ochrona Środowiska; 2011, 33, 2; 23-26
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and Modeling of Domain Registration Process
Autorzy:
Arabas, P.
Jaskóła, P.
Kamola, M.
Karpowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/309217.pdf
Data publikacji:
2012
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
domain market
domain registration
forecasting
time series modeling
Opis:
The paper presents analysis of the domain name reservation process for the polish .pl domain. Two models of various time scale are constructed and finally combined to build long range high resolution model. The results of prediction are verified using real data.
Źródło:
Journal of Telecommunications and Information Technology; 2012, 2; 63-73
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving prediction models applied in systems monitoring natural hazards and machinery
Autorzy:
Sikora, M.
Sikora, B.
Powiązania:
https://bibliotekanauki.pl/articles/331302.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zagrożenie naturalne
szereg czasowy
k-najbliższy sąsiad
natural hazards monitoring
regression rules
time series forecasting
k-nearest neighbors
Opis:
A method of combining three analytic techniques including regression rule induction, the k-nearest neighbors method and time series forecasting by means of the ARIMA methodology is presented. A decrease in the forecasting error while solving problems that concern natural hazards and machinery monitoring in coal mines was the main objective of the combined application of these techniques. The M5 algorithm was applied as a basic method of developing prediction models. In spite of an intensive development of regression rule induction algorithms and fuzzy-neural systems, the M5 algorithm is still characterized by the generalization ability and unbeatable time of data model creation competitive with other systems. In the paper, two solutions designed to decrease the mean square error of the obtained rules are presented. One consists in introducing into a set of conditional variables the so-called meta-variable (an analogy to constructive induction) whose values are determined by an autoregressive or the ARIMA model. The other shows that limitation of a data set on which the M5 algorithm operates by the k-nearest neighbor method can also lead to error decreasing. Moreover, three application examples of the presented solutions for data collected by systems of natural hazards and machinery monitoring in coal mines are described. In Appendix, results of several benchmark data sets analyses are given as a supplement of the presented results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 2; 477-491
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wspomaganie planowania wielkości zapotrzebowania na klej poliuretanowy w kopalni węgla kamiennego
Demand planning support for polyurethane adhesive in coal mine
Autorzy:
Jakowska-Suwalska, K.
Sojda, A.
Wolny, M.
Powiązania:
https://bibliotekanauki.pl/articles/322466.pdf
Data publikacji:
2012
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
kopalnia węgla kamiennego
zarządzanie materiałami
prognoza szeregów czasowych
model ekonometryczny
poliuretan
hard coal mine
materials management
time series forecasting
econometric model
polyurethane
Opis:
Praca przedstawia propozycję metody wspomagania planowania zapotrzebowania na klej poliuretanowy, która bazuje na metodach prognozowania szeregów czasowych oraz na podstawie modelu ekonometrycznego. Jako finalny model prognostyczny wspomagający planowanie wielkości zapotrzebowania zaproponowano kombinowany model agregujący prognozy postawione za pomocą wybranych modeli. Agregacja polega na zastosowaniu sumy ważonej, przy tym wagi ustalono na podstawie kryterium minimalnego błędu prognoz wygasłych.
In this paper proposal of method for polyurethane adhesive demand planning support is presented. The method is based on models of time series forecasting and econometric model. The proposal is to combine the forecasts through application of weighted sum. The weight factors are determined by the minimal mean error of extinct forecasts criterion.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2012, 61; 127-138
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Z badań nad metodami prognozowania na podstawie niekompletnych szeregów czasowych z wahaniami okresowymi (sezonowymi)
Studies of methods applied to forecasting incomplete data in seasonal time series
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/422819.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
szeregi czasowe
wahania sezonowe
brakujące dane
prognozowanie
time series
seasonal fluctuations
missing data
forecasting
Opis:
Praca została poświęcona syntetycznemu omówieniu wyników wieloletnich badań autorów nad zastosowaniami metod prognozowania w warunkach braku pełnej informacji w szeregach czasowych z wahaniami sezonowymi. Rozważania odnosić się będą do dwóch rodzajów luk w danych: systematycznych i niesystematycznych. Z lukami systematycznymi mamy do czynienia wtedy, gdy nie są dostępne informacje liczbowe przynajmniej o jednym podokresie w całym przedziale czasowym „próby”. Rozpatrywane będą metody prognozowania zarówno dla danych oryginalnych (z sezonowością) jak i danych, z których wyeliminowano wahania sezonowe. Egzemplifikacją rozważań o charakterze teoretycznym będzie przykład empiryczny.
This work presents discussion about results of long-term of authors research on applications of different forecasting methods in condition of lack of full information. There will be considered two types of gaps in data: systematic and unsystematic. The systematic gaps in data are only when we have not any information about at least one sub-period in the whole of analyzed data. There will be presented two types of methods applied to time series with and without seasonal component. Exemplification of theoretical considerations will be an empirical example.
Źródło:
Przegląd Statystyczny; 2012, 59, numer specjalny 1; 140-154
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie podejścia aproksymującego i klasyfikującego w prognozowaniu kursów wybranych akcji na GPW w Warszawie S.A. z użyciem jednokierunkowych sieci neuronowych
Forecasting Stock Prices Using Feed-Forward Neural Network - a Comparison of Approximation and Classification Approaches
Autorzy:
Kasznia, Anna
Powiązania:
https://bibliotekanauki.pl/articles/589117.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Giełda papierów wartościowych
Kurs akcji
Prognozowanie
Sieci neuronowe
Szeregi czasowe
Forecasting
Neural networks
Share price
Stock market
Time-series
Opis:
In this paper two approaches to financial time series forecasting using neural networks were compared. First one, the function approximation approach, in which neural networks are trained to forecast the exact one day ahead value of stock price. And the second one, classification approach, in which the output variable is the direction of future stock price movements. The aim of this work was to check if using the classification models can lead to better results in terms of direction of change forecasting and profits generated by their forecasts. This research was conducted on the basis of the time series of daily closing stock prices for three companies listed on the Warsaw Stock Exchange. Simulations show that some of the approximating models achieved satisfactory results in terms of the directional symmetry measure, although the best results for each of the analyzed company have been achieved for classification models.
Źródło:
Studia Ekonomiczne; 2013, 146; 59-67
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ redukcji szumu losowego metodą najbliższych sąsiadów na wyniki prognoz otrzymanych za pomocą największego wykładnika Lapunowa
The Effect of the Reduction Random Noise by the Method of Nearest Neighbors on Forecasting Results Obtained Using the Largest Lyapunov Exponent
Autorzy:
Miśkiewicz-Nawrocka, Monika
Powiązania:
https://bibliotekanauki.pl/articles/587384.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Badania empiryczne
Prognozowanie
Prognozowanie rynku pracy
Szeregi czasowe
Wykładniki Lapunowa
Empirical researches
Forecasting
Labour market forecasting
Lyapunov exponents
Time-series
Opis:
In this paper has been researched the effect of random noise reduction on the accuracy of forecasts of economic time series obtained using the largest Lyapunov exponent method (LEM). The aim of the article was to compare the prediction errors obtained by LEM for the series before and after the random noice reduction and the time series filtred by models ARMA. The nearest neighbors method was used to reduce random noise in economic time series.
Źródło:
Studia Ekonomiczne; 2013, 159; 82-98
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie teorii szarych systemów do przewidywania przyszłych ofert składanych na aukcjach pierwszej ceny poprzez pryzmat modelu szarego GM(1,1)
Application of Gray System Theory to Model the First-Price Auction
Autorzy:
Barczak, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/587238.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Aukcje
Metody ekonometryczne
Prognozowanie
Szeregi czasowe
Auctions
Econometric methodology
Forecasting
Time-series
Opis:
This paper presents the possibility of applying the theory of gray systems, with particular emphasis on the model GM (1,1) in the modeling of the first price auction. The paper presents the properties of the model GM (1,1) for the ultrashort time series representing the bid made by the participants at the first price auction. An analysis of the residuals simulation model based on the length of the time series and forecasting capabilities based on gray model GM (1,1). The analysis shows that with the decreasing the number of observations in time series (short time series) decreases the expost forecast error. This property is very important in modeling the course of the auction and in particular predicting possible future offerings. Model GM (1,1) can be considered in applications for masterpieces auctions.
Źródło:
Studia Ekonomiczne; 2013, 146; 7-18
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie kolejnych wartości pomiarowego szeregu czasowego z zastosowaniem sztucznych sieci neuronowych i funkcji trygonometrycznych
Forecasting the next value measurement time series with the use of artificial neural networks and trigonometric functions
Autorzy:
Stachno, A.
Suproniuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/156296.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
prognozowanie
szeregi czasowe
sieci neuronowe
forecasting
time series
artificial neural networks
Opis:
W artykule przedstawiono wyniki badań prognozowania kolejnych wartości pomiarowych szeregów czasowych z zastosowaniem sztucznych sieci neuronowych. Metoda ta umożliwia analizę danych pomiarowych, pochodzących z obiektu, który nie posiada modelu matematycznego. Zbudowanie modelu neuronowego na podstawie szeregu czasowego, odzwierciedlającego dane pomiarowe jest często jedyną metodą przybliżenia sposobu działania obiektu. Wykorzystanie tego modelu do prognozowania zachowania się obiektu w przyszłości może uwzględniać dodatkowo zestaw funkcji trygonometrycznych oraz autorskiej metody WMF wygładzania szeregu czasowego. Przeprowadzone badania wykazały znaczący wzrost dokładności prognoz oraz możliwość uniezależnienia ich od wyprzedzenia czasowego.
The paper presents the results of forecasting subsequent measurement values of the time series (Fig. 1) using artificial neural networks. This method allows the analysis of measurement data [1], coming from an object that does not have a mathematical model. The only representation of the actual state of the output object is approximation of its properties using the neural model, automatically-adapting with respect to the output (Fig. 2). Creating a neural model based on the time series reflecting the measurement data is often the only way to approach the object operation. The use of this model for forecasting the behavior of the object in the future may include an additional set of trigonometric functions (Fig. 7), appropriately presented at the inputs of the neural network. As described in the work, the result of the time series to supplement additional, independent from the object data is to improve the forecast accuracy of successive values of the time series. Taking into account in the forecasting process data smoothing the author's method WMF [1] (Fig. 8), causes a significant increase in the accuracy of the obtained forecast results. The study showed the possibility of using trigonometric functions as input learning network. In addition, there was shown the increase in the accuracy of forecasts of successive values of the time series with different advance and independence of it from historical data (Fig. 10).
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 9, 9; 764-767
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies