- Tytuł:
- Prognostics uncertainty reduction by right-time prediction of remaining useful life based on hidden Markov model and proportional hazard model
- Autorzy:
-
Zhiyong, Gao
Jiwu, Li
Rongxi, Wang - Powiązania:
- https://bibliotekanauki.pl/articles/1841766.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
- Tematy:
-
RUL
uncertainty
right-time prediction
PHM
HMM - Opis:
- Uncertainty is a key problem in remaining useful life (RUL) prediction, and measures to reduce uncertainty are necessary to make RUL prediction truly practical. In this paper, a right-time prediction method is proposed to reduce the prognostics uncertainty of mechanical systems under unobservable degradation. Correspondingly, the whole RUL prediction process is divided into three parts, including offline modelling, online state estimating and online life predicting. In the offline modelling part, hidden Markov model (HMM) and proportional hazard model (PHM) are built to map the whole degradation path. During operation, the degradation state of the object is estimated in real time. Once the last degradation state reached, the degradation characteristics are extracted, and the survival function is obtained with the fitted PHM. The proposed method is demonstrated on an engine dataset and shows higher accuracy than traditional method. By fusing the extracted degradation characteristics, the obtained survival function can be basis for optimal maintenance with lower uncertainty.
- Źródło:
-
Eksploatacja i Niezawodność; 2021, 23, 1; 154-164
1507-2711 - Pojawia się w:
- Eksploatacja i Niezawodność
- Dostawca treści:
- Biblioteka Nauki