Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "text categorization" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Multiaspect Text Categorization Problem Solving: a Nearest Neighbours Classifier Based Approaches and Beyond
Autorzy:
Zadrożny, S.
Kacprzyk, J.
Gajewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/950980.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
text categorization
intelligent system
nearest neighbours classifiers
topic tracking and detection
fuzzy majority
Opis:
We deal with the problem of the multiaspect text categorization which calls for the classification of the documents with respect to two, in a sense, orthogonal sets of categories. We briefly define the problem, mainly referring to our previous work, and study the application of the k- nearest neighbours algorithm. We propose a new technique meant to enhance the effectiveness of this algorithm when applied to the problem in question. We show some experimental results confirming usefulness of the proposed approach.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2015, 9, 4; 58-70
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature selection using particle swarm optimization in text categorization
Autorzy:
Aghdam, M. H.
Heidari, S.
Powiązania:
https://bibliotekanauki.pl/articles/91792.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
classification system
feature selection
text categorization
particle swarm optimization (PSO)
system klasyfikacji
wybór funkcji
kategoryzacja tekstu
optymalizacja rojem cząstek
Opis:
Feature selection is the main step in classification systems, a procedure that selects a subset from original features. Feature selection is one of major challenges in text categorization. The high dimensionality of feature space increases the complexity of text categorization process, because it plays a key role in this process. This paper presents a novel feature selection method based on particle swarm optimization to improve the performance of text categorization. Particle swarm optimization inspired by social behavior of fish schooling or bird flocking. The complexity of the proposed method is very low due to application of a simple classifier. The performance of the proposed method is compared with performance of other methods on the Reuters-21578 data set. Experimental results display the superiority of the proposed method.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 4; 231-238
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effective multi-label classification method with applications to text document categorization
Autorzy:
Glinka, K.
Zakrzewska, D.
Powiązania:
https://bibliotekanauki.pl/articles/94735.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
multilabel classification
text categorization
problem transformation method
text management
Opis:
Increasing number of repositories of online documents resulted in growing demand for automatic categorization algorithms. However, in many cases the texts should be assigned to more than one class. In the paper, new multi-label classification algorithm for short documents is considered. The presented problem transformation Labels Chain (LC) algorithm is based on relationship between labels, and consecutively uses result labels as new attributes in the following classification process. The method is validated by experiments conducted on several real text datasets of restaurant reviews, with different number of instances, taking into account such classifiers as kNN, Naive Bayes, SVM and C4.5. The obtained results showed the good performance of the LC method, comparing to the problem transformation methods like Binary Relevance and Label Powerset.
Źródło:
Information Systems in Management; 2016, 5, 1; 24-35
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categorization of persons based on their mentions in Polish news texts
Autorzy:
Pachocki, Maciej
Wróblewska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/385228.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fined‐grained named entity classification
text classification
categorization of persons
Opis:
Our goal described in this paper was to design, imple‐ ment and test a method of categorization of mentions of persons in Polish news texts. We gathered and classified the input data in order to measure the accuracy of the method. Train and test data were constructed by using lists of persons collected from YAGO knowledge base and Polish Wikipedia. During tests the efficiency of categori‐ zation depending on different representations of a per‐ son was studied. Experiments were executed on our and a chosen solution from literature. The results are shown and discussed in the paper.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 2; 42-49
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biblical and Anthropocentric Phraseologisms in Dmytro Dontsov’s Works: A Cognitive Aspect
Autorzy:
Mykytyuk, Oksana
Powiązania:
https://bibliotekanauki.pl/articles/31341231.pdf
Data publikacji:
2022
Wydawca:
Wydawnictwo Uniwersytetu Śląskiego
Tematy:
Cognitive linguistics
journalistic text
partially-authorial / authorial phraseologism
categorization
phraseological-and-semantic microfield
Dmytro Dontsov
Opis:
The paper deals with Dontsov’s “phraseological speech” in the framework of cognitive linguistics. The ways of creating partially-authorial (biblical) and authorial (anthropocentric) phraseologisms are discussed and their assignment to different phraseological-semantic microfields is suggested. A number of Dontsov’s phraseologisms are viewed as linguomental pictures of the world that are potentially acceptable for a wider use.Methodologically, the research presents a cluster of general scholarly methods and those used in cognitive linguistics as well as special approaches developed in modern anthropocentric research. Methods of cognitive linguistics are of the utmost importance and include categorizing the phenomena of the objective reality and the interdisciplinary method of interpretation related to the correlation of language data with cultural studies, political science, ethnopsychology and other disciplines. Semantic and contextual analyses are also used as supplementary methods. The potential value of the research is ensured by its contribution to the modern anthropocentric linguistics that aims at studying language through its speaker.Structural-and-logical scheme illustrating the cognitive stages of generating a phraseologism is suggested and the importance of categorization of lingual phenomena is emphasized. Dontsov’s phraseologisms are claimed to be means of exposure of the national Ukrainian lingual picture, symbols of the national worldview, and the prism of the world perception and understanding.
Źródło:
Neophilologica; 2022, 34; 1-16
0208-5550
2353-088X
Pojawia się w:
Neophilologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of various GPU acceleration strategies in text categorization processing flow
Autorzy:
Korduła, Ł.
Wielgosz, M.
Karwatowski, M.
Pietroń, M.
Żurek, D.
Wiatr, K.
Powiązania:
https://bibliotekanauki.pl/articles/114132.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
GPU
NLP
text categorization
OpenCL
Opis:
Automatic text categorization presents many difficulties. Modern algorithms are getting better in extracting meaningful information from human language. However, they often significantly increase complexity of computations. This increased demand for computational capabilities can be facilitated by the usage of hardware accelerators like general purpose graphic cards. In this paper we present a full processing flow for document categorization system. Gram-Schmidt process signatures calculation up to 12 fold decrease in computing time of system components.
Źródło:
Measurement Automation Monitoring; 2017, 63, 6; 203-205
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of nature-inspired algorithms for text feature selection
Autorzy:
Çoban, Önder
Powiązania:
https://bibliotekanauki.pl/articles/27312909.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nature-inspired algorithms
feature selection
text categorization
Opis:
This paper provides a comprehensive assessment of basic feature selection (FS) methods that have originated from nature-inspired (NI) meta-heuristics; two well-known filter-based FS methods are also included for comparison. The performances of the considered methods are compared on four balanced highdimensional and real-world text data sets regarding the accuracy, the number of selected features, and computation time. This study differs from existing studies in terms of the extent of experimental analyses that were performed under different circumstances where the classifier, feature model, and term-weighting scheme were different. The results of the extensive experiments indicated that basic NI algorithms produce slightly different results than filter-based methods for the text FS problem. However, filter-based methods often provide better results by using lower numbers of features and computation times.
Źródło:
Computer Science; 2022, 23 (2); 179--204
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of methods and means of text mining
Autorzy:
Rybchak, Z.
Basystiuk, O.
Powiązania:
https://bibliotekanauki.pl/articles/411072.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
text mining
text analytics
data analysis
high-quality information
text categorization
text clustering
document summarization
sentiment analysis
sieć językowa
analiza tekstu
analiza danych
wysoka jakość informacji
klasyfikacja tekstowa
kategoryzacja tekstowa
grupowanie tekstu
streszczenie dokumentów tekstowych
technika sentiment analysis
Opis:
In Big Data era when data volume doubled every year analyzing of all this data become really complicated task, so in this case text mining systems, techniques and tools become main instrument of analyzing tones and tones of information, selecting that information that suit the best for your needs and just help save your time for more interesting thing. The main aims of this article are explain basic principles of this field and overview some interesting technologies that nowadays are widely used in text mining.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 2; 73-78
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adapting text categorization for manifest based android malware detection
Autorzy:
Coban, Onder
Ozel, Selma Ayse
Powiązania:
https://bibliotekanauki.pl/articles/305467.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Android
malware detection
text categorization
machine learning
Opis:
Malware is a shorthand of malicious software that are created with the intent of damaging hardware systems, stealing data, and causing a mess to make money, protest something, or even make war between governments. Malware is often spread by downloading some applications for your hardware from some download platforms. It is highly probable to face with a malware while you try to load some applications for your smart phones nowadays. Therefore it is very important that some tools are needed to detect malware before loading them to the hardware systems. There are mainly three different approaches to detect malware: i) static, ii) dynamic, and iii) hybrid. Static approach analyzes the suspicious program without executing it. Dynamic approach, on the other hand, executes the program in a controlled environment and obtains information from operating system during runtime. Hybrid approach, as its name implies, is the combination of these two approaches. Although static approach may seem to have some disadvantages, it is highly preferred because of its lower cost. In this paper, our aim is to develop a static malware detection system by using text categorization techniques. To reach our goal, we apply text mining techniques like feature extraction by using bag-of-words, n-grams, etc. from manifest content of suspicious programs, then apply text classification methods to detect malware. Our experimental results revealed that our approach is capable of detecting malicious applications with an accuracy between 94.0% and 99.3%.
Źródło:
Computer Science; 2019, 20 (3); 305-327
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies