Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "tethys" wg kryterium: Temat


Tytuł:
Upwelling regime in the Carpathian Tethys: a Jurassic-Cretaceous palaeogeographic and paleoclimatic perspective
Autorzy:
Golonka, J.
Krobicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/2059324.pdf
Data publikacji:
2001
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Tethys
Carpathians
Jurassic
Cretaceous
palaeogeography
palaeoclimate
palaeoecology
upwelling
Opis:
Jurassic and Cretaceous global palaeogeographic reconstructions show a changing configuration of mountains, land, shallow seas and deep ocean basins, and these are used as input for paleoclimatic modelling. We have generated Oxfordian-Kimmeridgian, Tithonian-Berriasian and Barremian-Hauterivian paleoclimatic maps, showing air pressure, wind directions, humidity zones and areas favourable to upwelling conditions, modelled by the PALEOCLIMATE program and plotted on the palaeogeographic background. Paleoclimate modelling suggests that prevailing Jurassic-Cretaceous winds in the northern Tethys area came from south-south-west, and may have been parallel to the Czorsztyn Ridge, uplifted as a result of extension during the Jurassic supercontinental breakup. Upwelling may have been induced at the southeastern margin of the ridge. The model is consistent with the rock records within the earliest Cretaceous deposits. The presence of phosphates and a palaeoenvironmental analysis of benthic fauna support the upwelling model.
Źródło:
Geological Quarterly; 2001, 45, 1; 15-32
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unraveling the collisional history of the Western Carpathians through deep geophysical sounding
Autorzy:
Soni, Tanishka
Schiffer, Chrystian
Mazur, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/24202097.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Carpathians
Tethys
terranes
Opis:
The ALpine-CArpathian-PAnnonian (ALCAPA) block is one of the terranes involved in the Alpine-Tethys suture along with the North European Plate. In the Western Carpathians, this suture is supposed to be represented by the Pieniny Klippen Belt (PKB) which is a few kilometres wide and about 600 km long unit between the Outer Western Carpathians (OWC) and Central Western Carpathians (CWC) (Plašienka et al., 1997; Schmid et al., 2008). Unlike the Neotethian suture in the Western Carpathians, the PKB does not show the typical characteristics of a suture. The PKB is a sub-vertical unit with mainly shallow marine limestone and flysch deposits in a conspicuous “blockin-matrix” structure (Plašienka et al., 1997). The presence of “exotic” sediments in the PKB and the southernmost units of the OWC along with their shallow marine deposition environment led to the theory proposing the presence of a continental sliver called the Czorsztyn Ridge in the Alpine Tethys, dividing it into two oceanic/marine basins: the Magura Ocean to the north and the Vahic Ocean to the south (Plašienka, 2018). This controversial continental fragment possibly forming the basement for PKB successions, and its structural relationship with the adjoining OWC and CWC units, make it the main target of this project. The objective is to find evidence of the presence of this continental block, the Czorsztyn Ridge, which may have subducted along with the Vahic oceanic lithosphere underneath the CWC (Schmid et al., 2008). A passive seismic experiment will provide insight into the deep lithospheric structure across the PKP, testing the presence of a tectonic suture along with relaminated remnants of the Czorsztyn Ridge, and potential remnants of subducted or underthrusted lithosphere. Eighteen broadband stations have been deployed in a ~N-S transect (Fig. 1a) under the umbrella of the AdriaArray initiative, cutting across the PKB and Neotethian Meliata suture to the south. The data obtained during up to three years will complement 10 other permanent and temporary broadband stations, forming an approximate 370 km long profile and will be used to perform receiver function analysis and build structural and velocity models of the lithosphere (i.e., Schiffer, 2014; Schiffer et al., 2023) beneath the Western Carpathians. The horizontal extent of the imaging is shown in Figure 1b.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 65--66
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Triassic micro-charcoal as a promising puzzle piece in palaeoclimate reconstruction: An example from the Germanic Basin
Autorzy:
Götz, Anette E.
Uhl, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/2171822.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
wildfire
palaeoclimate
Triassic
Peri-Tethys
Germany
Opis:
Fossil charcoal is the primary source of evidence for palaeo-wildfires and has gained increasing interest as a proxy in the reconstruction of past climates and environments. Today, increasing temperatures and decreasing precipitation/humidity appear to correlate with increases in the frequency and intensity of wildfires in many regions worldwide. Apart from appropriate climatic conditions, sufficient atmospheric oxygen (>15%) is a necessary precondition to sustain combustion in wildfires. The Triassic has long been regarded as a period without evidence of wildfires; however, recent studies on macro-charcoal have provided data indicating their occurrence throughout almost the entire Triassic. Still, the macro-palaeobotanical record is scarce and the study of micro-charcoal from palynological residue is seen as very promising to fill the gap in our current knowledge on Triassic wildfires. Here, the authors present the first, verified records of micro-charcoal from the Triassic of the Germanic Basin, complementing the scarce macro-charcoal evidence of wildfires during Buntsandstein, Muschelkalk and Keuper (Anisian-Rhaetian). The particles analysed by means of scanning electron microscopy (SEM) show anatomical features typical of gymnosperms, a major element of the early Mesozoic vegetation following the initial recovery phase after the PT-boundary event. From the continuously increasing dataset of Triassic charcoal, it becomes apparent that the identification of wildfires has a huge potential to play a crucial role in future studies, deciphering Triassic climate dynamics. The first SEM study of micro-charcoal from palynological residue spanning the entire Triassic period, presented here, is a key technique to further unravel the charcoal record as a puzzle piece in palaeoclimate reconstruction.
Źródło:
Annales Societatis Geologorum Poloniae; 2022, 92, 3; 219--231
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tracing palaeocurrents from the Arctic Realm into the Tethys Ocean: the use of glendonite as an indicator for cold bottom water masses
Autorzy:
Merkel, Anna
Munnecke, Alex
Powiązania:
https://bibliotekanauki.pl/articles/24202087.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
ocean
water
Opis:
Today, the global conveyor belt of ocean currents is controlled by the configuration of continents and the climate. Conversely, ocean currents influence water and air temperatures as well as the amount of rainfall on a regional to local scale. In addition, they govern species distribution patterns, sedimentation patterns and the dispersal of nutrients in both oceans and epeiric seas. Therefore, the reconstruction of palaeocurrents is crucial for the understanding of ancient environments and the past climate. An important driver for the global ocean circulation is the formation of deep water. However, deep-water production is difficult to estimate, and its circulation is difficult to reconstruct, not only today but especially in the geological record. Palaeocurrent reconstructions are often based on the temporal and spatial distribution of marine species. In this presentation, a new approach is proposed which uses the occurrence of glendonites as a proxy for cool bottom currents. Glendonites are pseudomorphs after the hydrous carbonate mineral ikaite (CaCO3·6H2O) which only forms in environments characterised by near-freezing temperatures. Throughout the Phanerozoic, glendonites can be found in successions which were deposited in high latitudes. However, examples of glendonite occurrences in mid-latitudinal sections are also reported. One of these examples are upper Pliensbachian (Lower Jurassic) glendonites from a shallow-marine succession in South Germany which was located in the European epicontinental sea  – an area, where it was technically too warm to form the precursor mineral ikaite. Based on petrographical and sedimentological investigations as well as stable isotope analyses it is concluded that a low temperature was the main factor for ikaite formation in the studied section. To explain the low water temperatures, a model for a thermohaline circulation in the European epicontinental sea is proposed. The cool climate in the late Pliensbachian initiated the growth of sea ice in high latitudes, leading to the formation of cold and saline bottom waters analogous to the modern formation of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW). The cold bottom current flowed southward from the Arctic Realm through the Viking Corridor into the European Epicontinental Sea, thereby causing a massive cooling of the deeper parts of the epeiric sea, which led to the formation of ikaite in temperate areas. After passing the shelf, the bottom current entered the Western Tethys, probably forming a deep water mass. The proposed model can help to explain mid-latitudinal glendonite occurrences not only in the Pliensbachian, but also in other areas and time slices which are characterised by cooling. Moreover, it enables the use of the pseudomorph as a tracer for cold bottom currents which can be a helpful tool for the reconstruction of global ocean current patterns.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 49--49
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Oxfordian ammonite genus Passendorferia Brochwicz Lewiński and the Tethyan subfamily Passendorferiinae Meléndez: origin and palaeobiogeography
Autorzy:
Mendez, G.
Atrops, F.
Bello, J.
Brochwicz-Lewiński, W.
Darpa, C.
Fozy, I.
Perez-Urresti, I.
Ramajo, J.
Sequeiros, L.
Powiązania:
https://bibliotekanauki.pl/articles/2061354.pdf
Data publikacji:
2009
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Upper Jurassic
ammonites
paleobiogeography
West Tethys
biostratigraphy
evolution
Mediterranean Province
Opis:
The Oxfordian ammonite group Passendorferiinae (known as "Mediterranean perisphinctids") forms a group of perisphinctids characterized by strongly evolute serpenticone coiling and subcircular to subquadrate whorl section, and forms a lateral divergent branch of the main stem Perisphinctidae. They originated probably from Late Callovian Grossouvriinae (Alligaticeras) and spread mainly in the Mediterranean (Tethyan) Province along the southern margin of Tethys, occasionally reaching the outer areas of epicontinental platforms. Their particular morphological features make them somewhat homoeomorphic with Tethyan Kimmeridgian Nebrodites. The phyletic link might be represented by the genus Geyssantia Meléndez, known from the Late Oxfordian Planula Chronozone. Separate biogeographic distribution in relation to the Perisphinctinae might reflect a progressive differentiation of western Tethyan faunas at the Callovian-Oxfordian boundary and at the onset of the Middle Oxfordian Transversarium Chronozone. Their rapid evolution gives them a biostratigraphic value similar to that of the Perisphinctinae. At the turn of the Middle-Late Oxfordian they gave rise to early Ataxioceratinae (Orthosphinctes), which replaced the Perisphinctinae in epicontinental areas, and colonised the marginal epicontinental blocks of northern Tethys. The taxonomy of this group is based upon the recognition of sexual dimorphism, using a single generic and specific name for both (M) and (m), and hence rejecting the use of former subgeneric ames for both dimorphs. A new species within this line: Passendorferia nodicostata sp. nov. from the Plicatilis Biozone (Paturattensis Subbiozone) is defined and described for the first time.
Źródło:
Volumina Jurassica; 2009, 7, 1; 113-134
1896-7876
1731-3708
Pojawia się w:
Volumina Jurassica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The middle to Late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys
Autorzy:
Less, G
Ozcan, E.
Papazzoni, C.A.
Stockar, R.
Powiązania:
https://bibliotekanauki.pl/articles/21939.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
biometry
Heterostegina
nummulitid foraminifer
paleontology
Foraminifera
stratigraphy
Eocene
evolution
Late Eocene
Western Tethys
Nummulitidae
Opis:
Megalospheric forms of Western Tethyan late Bartonian to late Priabonian involute Heterostegina from numerous localities, marking different ecological conditions, were morphometrically investigated. They belong to three species, H. armenica, H. reticulata, and H. gracilis based on the presence/absence of granulation, on the chamberlet characteristics and on the relative size of proloculus. Within these species a very rapid evolution could be observed in the reduction of the number of operculinid chambers, in the increase of the number of chamberlets and partially in the increase of the proloculus size. This evolution is demonstrated by stratigraphic superpositions in several localities (especially in the Mossano section), and is supported also by the change of co−occurring fossils, starting with the disappearance of large−sized Nummulites, then followed by the appearance of the genus Spiroclypeus and then by the disappearance of orthophragmines of middle Eocene acme. Based on the reduction of operculinid chambers, two chronosubspecies of Heterostegina armenica and seven of H. reticulata are defined biometrically (four of them: H. armenica tigrisensis, H. reticulata tronensis, H. r. hungarica, and H. r. mossanensis are introduced here). This allows to subdivide the Shallow Benthic Zone (SBZ) 18 into three and SBZ 19 into two subzones. The extremely rapid evolution of H. reticulata allows to calibrate larger foraminiferal events around the middle/late Eocene boundary. The extinction of large−sizedNummulitesseems to be heterochronous in the late Bartonian in having migrated eastward, while the first appearance of Spiroclypeus is shown to be synchronous at the base of the Priabonian. The middle/upper Eocene (= Bartonian/Priabonian) boundary is to be placed at the base of the Priabona marls in the Mossano section corresponding to the SBZ 18/19 limit, to the first appearance of genus Spiroclypeus, to that of Nummulites fabianii and of Heterostegina reticulata mossanensis. It falls into the upper part of both the P 15 and NP 18 planktic zones. The Western Tethyan Eocene involute Heterostegina became extinct, apparently with no Oligocene successors.
Źródło:
Acta Palaeontologica Polonica; 2008, 53, 2
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Late Eocene evolution of nummulitid foraminifer Spiroclypeus in the Western Tethys
Autorzy:
Less, G
Ozcan, E.
Powiązania:
https://bibliotekanauki.pl/articles/21784.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
biometry
nummulitid foraminifer
paleontology
Foraminifera
stratigraphy
Spiroclypeus
Eocene
evolution
Late Eocene
Western Tethys
Nummulitidae
Opis:
Megalospheric forms of Priabonian Spiroclypeus of the Western Tethys were morphometrically investigated. Based on the reduction of the average number of undivided, post−embryonic chambers, the investigated populations are grouped into two successive, phylogenetically linked species, S. sirottii sp. nov. and S. carpaticus. The evolution is also demonstrated by the increase of the number of secondary chamberlets in particular chambers, by the increase of the diameter of the first two whorls and by that of the size of the proloculus, although the latter turned out to be also ecologically controlled. This evolution is supported by the stratigraphic succession of populations in the Mossano section (N Italy) and by the change of accompanying fossils. Lacking in upper Bartonian beds, the first appearance of genus Spiroclypeus seems to be synchronous with the beginning of the late Eocene. The newly described S. sirottii is associated with Heterostegina reticulata mossanensis and orthophragmines containing forms of middle Eocene acme, both marking the lower part of the Priabonian. Meanwhile S. carpaticus co−occurs with H. gracilis and/or with orthophragmines characteristic of the upper part of the Priabonian. We suppose that the Spiroclypeus sirottii–carpaticus lineage is restricted to the Priabonian. Thus, Spiroclypeus sirottii is a zonal marker for the Shallow Benthic Zone (SBZ) 19 (early Priabonian) while S. carpaticusindicates the SBZ 20 (late Priabonian).
Źródło:
Acta Palaeontologica Polonica; 2008, 53, 2
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Jurassic-Cretaceous boundary in Boreal Russia : radiolarian and calcareous dinoflagellate potential biomarkers
Autorzy:
Vishnevskaya, V. S.
Powiązania:
https://bibliotekanauki.pl/articles/2060606.pdf
Data publikacji:
2017
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Tithonian stages
Berriasian stages
radiolarians
calcareous dinoflagellates
Tethys
boreal
Volgian
Opis:
The International Berriasian Working Group (ISCS) suggested primary and secondary marker “datums” to fix the basal Berriasian boundary and thus to detine the Jurassic-Cretaceous boundary (Wimbledon et al., 2011, 2013). Two primary markers Calpionella, as well as calcareous nannoplankton, are practically unknown in the Boreal Realm. Testing and calibration of these markers, as well as of fossils of radiolarians and other signals, in the most complete sections, were declared as an important task for the near future. In the Tethys, the Jurassic-Cretaceous boundary based on radiolarians falls inside zone UAZ 13 of Baumgartner et al. (1995), whereas in the palaeo-Pacific it corresponds to the boundary between zones 4 and 5 of Pessagno et al. (2009), and in boreal Siberia it probably falls between the biohorizons of Parvicingula haeckeli and P. khabakovi. The radiolarian events at the Jurassic-Cretaceous boundary in the boreal successions of Russia can be proposed to be used as an additional biomarker to help develop new integrated boundary criteria. Thus, as the first appearance of the zonal species Calpionella alpina, which defines the Jurassic and Cretaceous boundary, coincides with the first occurrence of the calcareous dinocyst zonal species Stomiosphaerina proxima (Reháková, 2000), it is logical to propose a calcareous dinoflagellate, widely represented in the Upper Jurassic-Lower Cretaceous Bazhenovo Formation of Siberia, as a secondary marker.
Źródło:
Geological Quarterly; 2017, 61, 3; 641--654
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The evidence of Palaeotropics and the Gondwana-derived terrane: an alternative scenario of the Palaeotethys divide in SE Asia
Autorzy:
Udchachon, Mongkol
Burrett, Clive
Thassanapak, Hathaithip
Powiązania:
https://bibliotekanauki.pl/articles/24202101.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Thailand
Tethys
limestones
Opis:
Along the Northern part of the West Thailand Region (NWTR), a long-lasting belt of radiolarian cherts, separates Pennsylvanian to Permian palaeotropical limestones of the Inthanon Zone to the east from Permian limestones in the west containing a temperate marine fauna in the Roadian and a biogeographically distinctive fusulinid fauna in the Wordian. Highly abundant but low diversity of Kungurian radiolarians in silicified shales as well as temperate faunas in limestones from the south and the west of Thailand, respectively support constrains in the temperate environment during the period of deglaciation in peri-Gondawana. The well-known underlying diamictite and overlying temperate sediments with the succeeding fully tropical limestone sequences support a gradational palaeoclimate transition. Devonian faunas found in condensed sequences of the NWTR were deposited in a deep platform or ramp environment. A lack of basalts in the NWTR does not suggest oceanic environments for any Palaeozoic sequence within the NWTR and a paucity of basalts in the northwestern part of the Inthanon Zone also does not provide good evidence of an oceanic realm. Indeed, ‘continental margin’ Carboniferous sandstones appear to underlie the palaeotropical limestones and their plant fossils and their benthonic faunas do not suggest oceanic conditions in the northwestern Inthanon Zone. We, therefore, suggest that an autochthonous or para-autochthonous Inthanon Zone origin for these Carboniferous sandstones is more likely than deposition within a subducting Palaeotethyan Ocean. A strong contrast between the ‘temperate’ Permian limestones of the NWTR and the tropical limestones of the Inthanon Zone further emphasises the Mae Yuam/Mae Sariang Fault Zone (MYMS FZ) as a reactivated oceanic boundary between Gondwana and ‘Cathaysia’ and is supported by the oceanic lithosphere origin of the detrital Cr spinels in the Triassic foreland basin siliciclastics of the NWTR. The limestones of the Inthanon Zone range from Visean to Permian and possibly Triassic and were deposited in shallow, tropical seas for over 90 million years. This longevity is either not possible or highly unlikely for shallow marine carbonates on volcanic seamounts supported on subducting (and therefore cooling and sinking) ocean crust (Huppert et al., 2020) but is possible on isolated carbonate platforms on continental crust separated by narrow basins with limited volcanism. Carboniferous sandstones and Devonian-Permian radiolarian cherts from the Inthanon Zone are continental marginal and are neither pelagic nor oceanic and are interpreted as deposited in extensional, deeper basins between the isolated carbonate platforms. We suggest an alternative hypothesis to the overthrust/ allochthon model where the NWTR is the eastern platform margin of the Sibumasu Terrane from the Devonian through to the Triassic and separated from the Inthanon Terrane by an ocean in the position of the MYMS FZ. It is suggested that Inthanon rifted from Gondwana in the Early Devonian and the NWTR, as part of the Sibumasu Terrane, rifted off in the early Permian. As the Inthanon Terrane ribbon continent drifted northwards the continental crust thinned and extended and small rift basins allowed basalts to be extruded associated with deep-water, continental margin, hemipelagic, non-hydrothermal radiolarian oozes. Isolated carbonate platforms were established on Carboniferous sandstone bases and were separated by deep-water but non-pelagic extensional basins. Turbidites originating on the carbonate highs supplied carbonates clasts containing Devonian through Permian conodonts, to the adjacent basins (Udchachon et al., 2018). We provisionally suggest that the Sukhothai Terrane rifted with Inthanon with its older siliciclastic successions of the Siluro-Devonian (?) Khao Kieo Formation and the unconformably overlying Carboniferous (Dan Lan Hoi Group) (Bunopas, 1982; Ueno & Charoentitirat, 2011) supplying siliciclastic and volcaniclastic debris to the Inthanon Zone. This hypothesis is broadly in accord with Dew et al.’s (2018) ‘explanation A’ for the crustal geochemistry of the northern Thailand terranes. In the early Permian (Kungurian) Sibumasu was probably in cool to temperate seas but by the middle Permian, the NWTR had rifted from Gondwana and was in the southern hemisphere tropics (13° ±2° S, Zhao et al., 2020). Terrane collision occurred during the Triassic (Ishida et al., 2006; Mitchell et al., 2012; Cai et al., 2017; Hara et al., 2021) with the establishment of a thrust front along the Mae Sariang Thrust Zone and the deposition of the mainly siliciclastic Mae Sariang Group on the NWTR within a foreland basin.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 73--74
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Banda Arcs and Carpathia/Pannonia: new insights on the Tethys Twins
Autorzy:
Milsom, John
Powiązania:
https://bibliotekanauki.pl/articles/24202142.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
Carpathians
Pomerania
Opis:
The Outer Banda and Carpathian arcs, of eastern Indonesia and Europe respectively, are examples of the highly arcuate fold-and thrust belts enclosing extensional basins that have been named oroclines. Both regions have experienced large scale extension within what is, overall, a compressive regime created by the convergence of major continental blocks and, despite major differences stemming from the quasi-oceanic setting of the one and intracontinental the setting of the other, there are reasons to suppose that comparative studies may produce insights into the evolution of both areas (Milsom, 2000). Processes in the Banda region are in some respects more open to direct examination, because extension is more recent, deep seismic activity is more widespread and basement structures are not concealed beneath thick sediment cover. To a considerable extent these advantages have compensated for the disadvantages of poor access and a relatively sparse database. The final two decades of the Twentieth Century saw rapid advances in understanding the area in terms of both geology and geophysics. In the first decade of the 20th century the techniques of seismic tomography began to be applied (Hall & Spakman, 2003) and confirmed the earlier interpretation, based on hypocentre locations, of the presence of a single, scoop-shaped, slab underlying the Banda Sea (Milsom, 2001). Intensive field and laboratory studies of Seram, the largest island in the northern part of the Outer Arc, then identified exposures of rocks metamorphosed at ultra-high temperature in the vicinity of the crust-mantle boundary, which led to the abandonment of the earlier interpretations of the associated ultramafic rocks as ophiolitic (Pownall et al., 2013). The extreme extension that brought these rocks to the surface also affected the subducted lithosphere that underlies the Banda Sea, and is one of the many pointers to the importance of asthenospheric flows in creating the present situation. While similar in many respects, the Carpathia-Pannonia area shows an orocline at a much later stage in its evolution, with some evidence concealed by later overprinting and some processes that would have been important in earlier stages now no longer occurring. On the other hand, some other aspects of orocline formation are likely to be better displayed there than in the Banda region. The now increasingly well determined history of the destruction of the Western Tethys and the development of the Alps-Carpathian-Dinarides orogen (e.g. Handy et al., 2015) offers strong support for theories involving mantle flow as a key factor in orocline formation.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 50--51
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Temporal dynamics of the geographic differentiation of Late Devonian Palmatolepis assemblages in the Prototethys
Autorzy:
Girard, C.
Ta, H.P.
Savage, N.
Renaud, S.
Powiązania:
https://bibliotekanauki.pl/articles/22384.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Paleobiologii PAN
Tematy:
paleontology
temporal dynamics
geographic differentiation
Late Devonian
Palmatolepis
Prototethys zob.Proto-Tethys Ocean
Proto-Tethys Ocean
Conodonta
mass extinction
morphometry
Frasnian
Famennian
Opis:
Throughout their history, species had to face environmental variations spatially and temporally. How both levels of variation interact will be of key importance in conditioning their response to major perturbations. We addressed this question by focusing on a period in Earth’s history marked by dramatic environmental and faunal changes, the Late Devonian Frasnian/Famennian boundary. From a paleogeographic point of view, this period is characterized by a cosmopolitanism of the faunas across a large ocean, the Prototethys. We considered the biotic reaction at a seldom considered scale, namely within a single subgenus of conodont, Palmatolepis (Manticolepis). Patterns of spatial and temporal differentiation were quantified using morphometrics of its platform element. The recognized cosmopolitanism of the faunas was confirmed at this scale of variation since temporal records gathered in distant areas around the Prototethys, including the seldom documented regions located nowadays in South−East Asia, displayed similar morphological trends in response to the major F/F crisis. Beyond this overall cosmopolitanism, subtle geographic structure was evidenced but was not stable through time. Geographic differentiation was maximal shortly before the F/F crisis, suggesting that despite high sea−level, tectonics leaded to complex submarine landscapes promoting differentiation. In contrast any geographic structure was swamped out after the crisis, possibly due to a global recolonization from few favorable patches.
Źródło:
Acta Palaeontologica Polonica; 2010, 55, 4
0567-7920
Pojawia się w:
Acta Palaeontologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Temporal and spatial heterogeneity of the Ailaoshan–Song Ma–Song Chay ophiolitic mélange, and its significance on the evolution of Paleo-Tethys
Autorzy:
Lin, Wei
Liu, Fei
Wang, Ying
Meng, Lingtong
Faure, Michel
Chu, Yang
Nguyen, Vuong Van
Wu, Qinying
We, Wei
Thu, Hoai Luong Thi
Vu, Tich Van
Powiązania:
https://bibliotekanauki.pl/articles/24202127.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
heterogeneity
Vietnam
Opis:
The ophiolite is the direct evidence to restore the oceanic evolution, and it is used to identify the convergence boundary of the plates. Compared with ophiolite, ophiolitic mélange, especially its matrix, contains more information about the evolution of ocean. The evolution of eastern Paleo-Tethys, between the South China and Indochina blocks, recorded the whole process of rifting from Gondwana and their northward migration and convergence. To understand the tectonic implications from matrix of ophiolitic mélange, the Mesozoic Paleo-Tethys Ailaoshan–Song Ma–Song Chay suture zone located in the North Vietnam–Southeast Yunnan region acts as an ideal study area. Based on the structural geology, we reviewed previous zircon U-Pb dating and Lu-Hf isotopic analyses on the detrital zircon from the Ailaoshan–Song Ma–Song Chay ophiolitic mélange. Accordingly, we subdivide the matrix of these ophiolitic mélange into four parts (M1, M2, M3, and M4; Fig. 1). M1 is mainly located in the middle segment of the Ailaoshan–Song Ma belt. It shows age peaks of 440 Ma and 960 Ma with εHf(t) values of −19.6 ~ +10.3. M2 is mainly located in the NW segment of the Ailaoshan–Song Ma belt, showing a dominant age peak of ~260 Ma. Particularly, it has εHf(t) values of −28.9 ~ +8.1. M3 is mainly located in the SE segment of the Ailaoshan–Song Ma belt, showing the peaks at ~250 Ma, 440 Ma, and 960 Ma with εHf(t) values of −21.9 ~ +10.1. M4 is mainly located in the Song Chay belt, showing the peaks at ~310 Ma, 470 Ma, 610 Ma, 770 Ma, and 965 Ma with εHf(t) values of −28.2 ~ +10.8. The geochronological data of the detrital zircon from the matrix of the Ailaoshan– Song Ma–Song Chay ophiolitic mélange zone, documents a temporal heterogeneity between the M1, M2, M3, and M4 units, which formed at 310–270 Ma, 265–250 Ma, 245–240 Ma, and 310–255 Ma, respectively. The different components and provenances of each unit reflect a strike-parallel heterogeneity (Fig. 1). The M1 unit was mainly sourced from the Paleozoic sedimentary rocks of the Indochina Block (IB). The main provenance for the M2 unit is Emeishan Large Igneous Province (ELIP). The magmatic arc developed in the IB provided the materials for the M3 unit, and the detrital materials of the M4 were mainly sourced from the South China Block (SCB) (Fig. 1). The Cenozoic strike-slip deformation led to an inverted geometry of the M1, M2, and M3 units, accounting for a strike-perpendicular heterogeneity straight to the strike of the orogenic belt. The temporal, strike-parallel, and strike-perpendicular heterogeneity help us to decipher the tempo-spatial evolution of the Paleo-Tethys. The M1, M2, M3, and M4 units contain information from different evolutionary stages, likely recording the comprehensive history of the ancient oceanic basin. Importantly, our results demonstrate that both the active continental margin of the IB and the passive continental margin of the SCB acted as provenance sources that supplied significant amount of detrital material in the ophiolitic mélange matrix, indicating that the Paleo-Tethys Ocean was a “narrow” or “limited” ocean rather than the archipelagic ocean proposed before.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 42--43
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tectono-sedimentary evolution of the junction area between the Western and Eastern Carpathian nappe systems (Ukrainian Carpathians)
Autorzy:
Hnylko, Oleh
Powiązania:
https://bibliotekanauki.pl/articles/24202114.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Carpathians
Ukraine
Tethys
Opis:
The Carpathians contain the remains of the Western Tethys, the main of which are: continental/microcontinental fragments (Alkapa and Tisza-Dacia terranes) of the Tethys Ocean, now located in the Central (Inner) Carpathians, and (palaeo)accretionary prisms, building mainly the Outer Carpathians. The Ukrainian Carpathians occupy the junction where the Western Carpathian and Eastern Carpathian nappe systems converged. In the presented work, author try to reconstruct the tectono-sedimentary evolution of the Eastern and Western Carpathian nappe systems in the junction area on the basis of own and published geomapping works, stratigraphic, sedimentological and structural research using existing restorations (see van Hinsbergen et al., 2020 and references therein). The Central Western Carpathian nappes (part of the Alcapa Terrane) are not exposed in Ukraine and probably buried under Neogene Transcarpathian Depression. The Central Eastern Carpathian nappes (part of the Tisza-Dacia Terraine) are represented in Ukraine by the Marmarosh thick-skinned basement nappes, that were formed in the Early Cretaceous time and overlapped by the latest Early Cretaceous–Paleogene post-nappe sedimentary cover. Between the Central Eastern and Central Western Carpathian nappe systems, the Pieniny Klippen Belt suture zone and Monastyrets Nappe filled with Paleogene flysch are developed. The structure of the junction between the Outer Eastern and Outer Western Carpathian nappe systems is more complicated. In Ukraine, the Outer Carpathians are made up of a several stacked nappes filled with Cretaceous–Neogene, mainly flysch sediments uprooted from their original substratum. In the Eastern Carpathian segment of Tethys at the Late Jurassic and/or Early Cretaceous, Ceahlau-Severin ocean (called Fore-Marmarosh one in Ukraine) was opened between the Dacia continental block (part of the Tisza-Dacia Terrane) and the Eurasian continent (van Hinsbergen et al., 2020 and references therein), that suggested by rift oceanic and continental basalts occurring under the Cretaceous flysch of the Outer Eastern Carpathian. Sinking of the Dacia (micro)continent into a subduction zone existed in the Neotethys ocean and inclined to the west (van Hinsbergen et al., 2020), could have caused the east-directed thrusting of the thick-skinned Marmarosh Nappes towards the CeahlauSeverin ocean. Ahead the Marmarosh nappe pile, the Eastern Carpathian Internal flysch thin-skinned nappes such as the Kamyanyi Potik, Rahiv, Burkut, Krasnoshora, Svydovets and Chornohora ones were formed. Coarsening upward and regular younging of the stratigraphic successions from inner to outer nappes suggest their attribution to the accretionary wedge growed in the Early Cretaceous–Paleogene time due to the subduction of the Outer Carpathian flysch basin basement under the Marmarosh pile. In the Western Carpathian segment, the Pieniny Klippen Belt accretionary wedge began to rise in the Late Cretaceous due to subduction of the Penninic oceanic domain under the Central Western Carpathians (part of the Alcapa Terrane) accompanied by detaching and grouping together originally very distant lithofacies (Plašienka, 2018 and references therein). The Western Carpathian Internal flysch nappes such as the Magura and Dukla units were attached to the Fore-Alcapa prism during the Middle Eocene–Oligocene, accordantly to outward shifting and uplifting of the trench-like Magura and Krosno lithofacies during this time. Closuring of the Monastyrets “between-terrainian” flysch basin at the late Eocene suggests the collision of the Alcapa and Tisza–Dacia terranes at the turn the Eocene and Oligocene. As a result, the Fore-Alcapa and Fore-Tisza-Dacia wedges were incorporated within an amalgamated internal wedge system that limited from the SW the Outer Carpathian basin. This unificated Menilite–Krosno basin was gradually uplifted and its deposits were subsequently thrusted as the external Silesian, Skyba and Boryslav-Pokyttya nappes onto the Miocene Carpathian Foredeep. Sedimentological and structural data suggest northeastward shift/migration of the wedge front–trench/foredeep– forebulge during Carpathian evolution. In addition, the junction of the Eastern and Western Carpathian accretionary wedges is complicated by strike-sleep movements.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 25--26
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stratigraphy of the Jajarkot nappe: finding the rocks of the Tethys province
Autorzy:
Lamsal, Sunil
Paudyal, Kabi Raj
Powiązania:
https://bibliotekanauki.pl/articles/24202133.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
stratigraphy
Tethys
Nepal
Opis:
There are several thrust sheets in the Lesser Himalayan region of Nepal. The Jajarkot nappe is one of them. It is located immediately west of the Kahun Klippe and east of the Karnali Nappe. There is no unified stratigraphy established for this thrust sheet. In the present research, an attempt was made to establish the stratigraphy of the Jajarkot nappe to fulfill the research gap. Previously described by Fuchs & Frank (1970) and Sharma (1980), the Jajarkot nappe in western Nepal have two distinctive crystalline lithological units: the Chaurjhari Formation and Thabang Formation. The previous unit consists of garnet-grade schist, and quartzites, with intrusions of basic rocks and granites, while the later unit consists of grey to brown crystalline limestones with biotite-quartz-schists. An unconformity is observed above the Thabang Formation. The younger geological unit above the unconformity is mapped as the Jaljala Formation, which is composed of finegrained calcareous sandstone and calcareous siltstone with minor proportions of limestones and grey-green slates. At present work, a preliminary geological study was carried out to work on the stratigraphy of the Jajarkot nappe in the Jaljala areas at 1:25,000 scales. Fossils of crinoids are found in the rock unit of the Jaljala Formation. These fossils are considered the index fossils of the Silurian. In this case, the Jaljala Formation would be equivalent to the rocks of the Tethyan affinity, and further study is under progress. The concept that the thrust sheets are moved from north to south in the Himalayas will be evidenced by these findings. An attempt is made to correlate the presently found fossils with the crinoids of the Phulchauki Group of the Kathmandu nappe and with the root zone of the Tethys succession.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 41--41
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sequence stratigraphy of the Upper Cretaceous–Eocene Belqa Group of Jordan (southern Tethys margin)
Autorzy:
Kalifi, Amir
Ardila-Sanchez, Maria
Messaoud, Jihede Hay
Laila, Wesam Abu
Buchem, Frans van
Ibrahim, Khalil
Powell, John
Powiązania:
https://bibliotekanauki.pl/articles/24202139.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Tethys
stratigraphy
Jordan
Opis:
The Belqa Group of Jordan (Upper Cretaceous–Eocene) contains a remarkable succession of sedimentary lithofacies, including chalk, sandstone, chert, phosphorite, oyster mounds and organic-rich marls deposited along the passive southern margin of the Neo-Tethys Ocean. The Belqa Group is now outcropping in spectacular wadis where they can be studied in detail. The exceptional outcrops exposures provide unique opportunities for studying three-dimensional spatial facies variations. However, this 3D facies distribution requires robust time control and the combination of modern sequence stratigraphic concepts and high-resolution dating methods. We report the establishment of a regional sequence stratigraphic model that provides the temporal framework for further detailed sedimentological, palaeontological and geochemical studies. Preliminary results show a stratigraphic organization in four major depositional sequences (3rd order), which are broadly in agreement with the lithostratigraphic formations. The age dating is based on new nano-fossil analyses and C/O and Sr isotope stratigraphy. A subdivision into higher-frequency sequences (4th/5th order) significatively improves the resolution of the stratigraphic framework and our understanding of spatio-temporal distribution of the sedimentary facies. The four sequences are: 1) The B1 sequence (Upper Coniacian-Santonian), characterized by a transgressive phase of chalk-rich sedimentation (coccolithophore-dominated) and a regressive phase of a prograding siliciclastics with a distal transition to the first phosphorite-chert facies. 2) The B2 sequence (Lower Campanian) also starts with a transgressive chalk dominated facies and subsequently develops into a chert-dominated marl facies (radiolarian-dominated). The chert is locally associated with thin phosphates and coquinas, as well as organic-matter rich facies in proximal marine settings. 3) The B3 sequence (Upper Campanian) is also characterized by a transgressive chalk dominated facies. The regressive phase is constituted by dm- to m-thick phosphorite beds that were deposited coevally with giant oyster banks (decameter scale). 4) The B4 sequence (Maastrichtian-Paleocene) represents a dramatic facies change to organic-rich pelagic marls, and can probably be further subdivided. This sedimentary succession highlights both gradual and rapid changes in biogenic productivity and geochemistry. These changes are punctuated and partly driven by significant relative sea-level changes, and likely also larger scale palaeoceanographical processes that are the focus of future work.
Źródło:
Geotourism / Geoturystyka; 2023, 1-2 (72-73); 32--32
1731-0830
Pojawia się w:
Geotourism / Geoturystyka
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies