Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "testy VaR" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Estimation risk taking into consideration the effect of forecasting scheme: robust inference about VaR
Ryzyko estymacyjne uwzględniające schemat prognozowania - wnioskowanie o VaR za pomocą metod odpornych
Autorzy:
Małecka, Marta
Powiązania:
https://bibliotekanauki.pl/articles/2138867.pdf
Data publikacji:
2022-10-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
Value-at-Risk
VaR tests
estimation risk
parameter uncertainty
wartość zagrożona ryzykiem
testy VaR
ryzyko estymacyjne
niepewność parametrów
Opis:
The paper addresses the issue of estimation risk in VaR testing. The occurrence of estimation risk (also called parameter uncertainty) implies that the observed VaR violation process may not fulfil the standard requirements that underpin the testing framework. As a result, VaR tests may reject correct VaR models due to estimation errors committed when predicting the VaR. The paper examines the robustness of VaR tests to estimation risk. The research is based on an observation indicating that certain elements of a forecasting scheme have a significant influence on estimation risk. Thus, the article extends the previous studies to include several more realistic forecasting schemes than those based solely on a fixed window. The aim of the research is twofold: firstly, to find methods of mitigating the negative impact of estimation risk on VaR tests, and secondly, to provide a comprehensive comparison of VaR testing methods with reference to the issue of estimation risk. The conducted analyses demonstrate that a proper adjustment of the forecasting scheme yields better results in terms of the accuracy of the tests than correcting estimation errors by means of the subsampling technique.
Artykuł dotyczy problemu ryzyka estymacyjnego przy testowaniu VaR. Występowanie ryzyka estymacyjnego (zwanego również niepewnością parametrów) oznacza, że obserwowany proces przekroczeń VaR może nie spełniać standardowych wymogów określających ramy testowe. W konsekwencji testy VaR mogą odrzucać prawidłowe modele VaR ze względu na błędy estymacji popełnione podczas wyznaczania prognoz VaR. W badaniu omawianym w artykule oceniana jest odporność testów VaR na ryzyko estymacyjne. U podstaw badania leży spostrzeżenie, że ryzyko estymacyjne w istotny sposób zależy od elementów schematu prognozowania. Z tego powodu w badaniu uwzględniono schematy prognozowania bardziej realistyczne niż schemat oparty na ustalonym oknie, co stanowi rozszerzenie w stosunku do wcześniej prowadzonych badań. Cel badania jest dwojaki: znalezienie metod, które pozwalałyby zniwelować negatywny wpływ ryzyka estymacji na testy VaR, oraz kompleksowe porównanie metod testowania VaR w odniesieniu do problemu ryzyka estymacyjnego. Przeprowadzone analizy wskazują m.in. na to, że odpowiednie dostosowanie schematu prognozowania daje lepsze wyniki pod względem dokładności testów niż korygowanie błędów estymacji techniką podpróbkowania.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2022, 67, 10; 1-27
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza Monte Carlo własności testów kointegracji dla panelowego procesu var z międzyprzekrojowymi wektorami kointegrującymi
Monte Carlo comparison of LCCA- and ML-based cointegration tests for panel var process with cross-sectional cointegrating vectors
Autorzy:
Kębłowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/964888.pdf
Data publikacji:
2018
Wydawca:
Główny Urząd Statystyczny
Tematy:
międzyprzekrojowe wektory kointegrujące
analiza korelacji kanonicznej
testy kointegracji
panelowy model VAR
procedura Boxa i Tiao
cross-sectional cointegrating vectors
canonical correlation analysis
cointegration tests
panel var model
box and tiao approach
Opis:
Small-sample properties of bootstrap cointegration rank tests for unrestricted panel VAR process are considered when long-run cross-sectional dependencies occur. It is shown that the bootstrap cointegration rank tests for the panel VAR model based on levels canonical correlation analysis are oversized, whereas the bootstrap cointegration rank tests based on maximum likelihood framework are undersized. Moreover, the former tests are in general outperformed by the latter in terms of performance. The results of the investigation indicate that the ML-based bootstrap cointegration rank tests perform well in small samples for small-sized panel VAR models with a few cross-sections.
W artykule przedstawiono wyniki badania własności bootstrapowych testów kointegracji dla panelowego procesu VAR z międzyprzekrojowymi wektorami kointegrującymi. Wyniki badania wskazują, że bootstrapowe testy kointegracji dla modelu PVAR, które oparte są na analizie korelacji kanonicznej poziomów, cechują się przeszacowaniem rozmiaru testu, z kolei bootstrapowe testy kointegracji dla modelu PVAR wywiedzione z metody największej wiarygodności charakteryzują się zwykle niedoszacowaniem rozmiaru testu. Wykazano również, że bootstrapowe testy kointegracji dla modelu PVAR wywiedzione z metody największej wiarygodności cechują się zwykle lepszymi własnościami ze względu na moc testu. Wyniki badania wskazują, że własności bootstrapowych testów kointegracji dla modelu PVAR wywiedzionych z metody największej wiarygodności cechują się satysfakcjonującymi własnościami małopróbkowymi dla małowymiarowych modeli PVAR z ograniczoną liczbą przekroi.
Źródło:
Przegląd Statystyczny; 2018, 65, 2; 173-182
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies