Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "target reliability" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Assessment of the strength reduction factor in predicting the flexural strength
Autorzy:
Alacali, S.
Arslan, G.
Powiązania:
https://bibliotekanauki.pl/articles/280506.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
reinforced concrete
beam
flexure strength
reduction factor
target reliability
Opis:
In the design of flexural strength, the strength reduction factor φ decreases from tension- -controlled sections to compression-controlled sections to increase safety with decreasing ductility. This paper presents how to determine the reduction factor for flexural strength of reinforced concrete beams according to ACI code. In the reliability-based design, the reliable prediction of the flexural strength of reinforced concrete members is assured by the use of reduction factors corresponding to different target reliability index β. In this study, for different β and coefficients of variation of the flexural strength parameters, the flexural strength reduction factor has been investigated by using experimental studies available in the literature. In the reliability analysis part of the study, the first-order second moment approach (FOSM) has been used to determine the reduction factor. It has also been assumed that the random variables are statistically independent.
Źródło:
Journal of Theoretical and Applied Mechanics; 2018, 56, 4; 1043-1053
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The investigation of the strength reduction factor in predicting the shear strength
Autorzy:
Arslan, G.
Alacali, S. N.
Sagiroglu, A.
Powiązania:
https://bibliotekanauki.pl/articles/281620.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
reinforced concrete
beam
shear strength
reduction factor
target reliability
Opis:
Design codes propose to restrict the nominal probability of failure within specific target structural reliability levels using a load factor and a strength reduction factor. In the current ACI318 Code, the strength reduction factor varies from 0.65 to 0.90, and the value considered in predicting the shear strength equals to 0.75. In this study, the change in the strength reduction factor in predicting the shear strength according to ACI318 has been investigated for different coefficients of variation of concrete compressive strength by using the first-order second moment approach, and the strength reduction factor is proposed for the target values of failure probability.
Źródło:
Journal of Theoretical and Applied Mechanics; 2015, 53, 2; 371-381
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System reliability demonstration with equivalent data from component accelerated testing based on reliability target transformation
Stwierdzanie niezawodności systemu na podstawie równoważnych danych z przyspieszonych badań elementów składowych w oparciu o transformację celu niezawodnościowego
Autorzy:
Luo, W.
Zhang, C.
Chen, X.
Wang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/301742.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability demonstration
accelerated testing
equivalent binomial component data
reliability target transformation
Bayesian attribute acceptance sampling plan
stwierdzanie niezawodności
badania przyspieszone
równoważne dane dwumienne dla części składowych
transformacja celu niezawodnościowego
bayesowski planwyrywkowej kontroli odbiorczej systemu wg
zadanych charakterystyk
Opis:
The reliability demonstration test (RDT) programs in general proceed at various levels, including component, subsystem, and system in the verification and validation phase of the product life cycle. The system reliability demonstration within feasible duration becomes a considerable issue because of the marketplace demands for decreased development time and cost. A method based on reliability target transformation is proposed to accomplish the system reliability demonstration with the data from the RDT of the components. In order to shorten the test time, the RDT plan for component under the accelerated condition is first designed. Then, the reliability target of the system with different lifetimes required by the producer and the consumer is transferred to the target with the same specified mission time, which should meet the time constraint of the system level test. Next, the lower limit confidence of component reliability at the system mission time are estimated and converted to the equivalent binomial component data by the curve fitting method, then they are synthesized to the equivalent binomial system data by the Bayesian method. Finally, the system reliability demonstration is considered. The system classical attribute acceptance sampling plan at the mission time is used to make decisions using the equivalent binomial system data. If the decision cannot be made, the system Bayesian attribute acceptance sampling plan will be designed with the equivalent data as the prior parameters and the complementary system test will be conducted.
Ogólnie, oprogramowanie do badań stwierdzających niezawodność (RDT) można stosować na różnych poziomach, w tym na poziomie elementu składowego, podsystemu i systemu, w fazie weryfikacji i walidacji cyklu życia produktu. Stwierdzenie niezawodności systemu w realnym terminie staje się ważkim problemem ze względu na wymogi rynku co do zmniejszenia czasu i kosztów rozwoju. W prezentowanej pracy zaproponowano metodę opartą na transformacji celu niezawodnościowego, wedle której niezawodność systemu stwierdza się na podstawie danych z RDT części składowych. Aby skrócić czas testowania, w pierwszej kolejności tworzy się plan RDT dla części składowej w warunkach przyspieszonych. Następnie cel niezawodnościowy systemu przy różnych czasach pracy wymaganych przez producenta, jak i konsumenta, zostaje przetransponowany na cel o tym samym określonym czasie użytkowania, który powinien spełniać ograniczenie czasowe dla badań na poziomie systemu. Następnie szacuje się dolne granice przedziałów ufności dla niezawodności komponentów w określonym czasie eksploatacji systemu oraz przekształca się je na równoważne dane dwumienne dla części składowych z wykorzystaniem metody dopasowywania krzywych; dalej, są one syntetyzowane do równoważnych dwumiennych danych dotyczących systemu z zastosowaniem metody Bayesa. Pozwala to na stwierdzenie niezawodności systemu. Decyzje podejmuje się na podstawie równoważnych danych dwumiennych dotyczących systemu z wykorzystaniem klasycznego planu wyrywkowej kontroli odbiorczej systemu według zadanych charakterystyk dla określonego czasu użytkowania. Jeżeli decyzja nie może zostać podjęta w ten sposób, konstruuje się bayesowski plan wyrywkowej kontroli odbiorczej systemu wg. zadanych charakterystyk, gdzie dane równoważne stanowią parametry a priori, oraz przeprowadza się uzupełniające badania systemu.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 4; 356-363
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability allocation using probabilistic analytical target cascading with efficient uncertainty propagation
Alokacja niezawodności z wykorzystaniem probabilistycznej metody analitycznego kaskadowania celów zapewniająca wydajną propagację niepewności
Autorzy:
Jiang, G.
Zhu, M.
Wu, Z.
Powiązania:
https://bibliotekanauki.pl/articles/301967.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
optymalna alokacja niezawodności
dekompozycja hierarciczna
probabilistyczna metoda analitycznego kaskadowania celów
propagacja niepewności
optimal reliability allocation
hierarchical decomposition
probabilistic analytical target cascading
uncertainty propagation
Opis:
Analytical target cascading (ATC) provides a systematic approach in solving reliability allocation problems for large scale system consisting of a large number of subsystems, modules and components. However, variability and uncertainty in design variables (e.g., component reliability) are usually inevitable, and when they are taken into consideration, the multi-level optimization will be very complicated. The impacts of uncertainty on system reliability are considered in this paper within the context of probabilistic ATC (PATC) formulation. The challenge is to reformulate constraints probabilistically and estimate uncertainty propagation throughout the hierarchy since outputs of subsystems at lower levels constitute inputs of subsystems at higher levels. The performance measure approach (PMA) and the performance moment integration (PMI) method are used to deal with the two objectives respectively. To accelerate the probabilistic optimization in each subsystem, a unified framework for integrating reliability analysis and moment estimation is proposed by incorporating PATC with single-loop method. It converts the probabilistic optimization problem into an equivalent deterministic optimization problem. The computational efficiency is remarkably improved as the lack of iterative process during uncertainty analysis. A nonlinear geometric programming example and a reliability allocation example are used to demonstrate the efficiency and accuracy of the proposed method.
Analityczne kaskadowanie celów (ATC) stanowi systematyczne podejście do rozwiązywania zagadnień alokacji niezawodności dotyczących systemów wielkoskalowych składających się z dużej liczby podsystemów, modułów i elementów składowych. Jednakże zmienność i niepewność zmiennych projektowych (np. niezawodności elementów składowych) są zazwyczaj nieuniknione, a gdy weźmie się je pod uwagę, optymalizacja wielopoziomowa staje się bardzo skomplikowana. W prezentowanym artykule, wpływ niepewności na niezawodność systemu rozważano w kontekście formuły probabilistycznego ATC (PATC). Wyzwanie polegało na probabilistycznym przeformułowaniu ograniczeń oraz ocenie propagacji niepewności w całej hierarchii, jako że wyjścia podsystemów na niższych poziomach stanowią wejścia podsystemów na poziomach wyższych. Cele te realizowano, odpowiednio, przy użyciu metody minimum funkcji granicznej (performance measure approach, PMA) oraz metody całkowania momentów statystycznych funkcji granicznej (performance moment integration, PMI). W celu przyspieszenia probabilistycznej optymalizacji w każdym podsystemie, zaproponowano ujednolicone ramy pozwalające na integrację analizy niezawodności z oceną momentów statystycznych poprzez połączenie PATC z metodą jednopoziomową (pojedynczej pętli, single-loop method). Zaproponowana metoda polega na przekształceniu probabilistycznego zagadnienia optymalizacyjnego na deterministyczne zagadnienie optymalizacyjne. Zwiększa to znacznie wydajność obliczeniową w związku z brakiem procesu iteratywnego podczas analizy niepewności. Wydajność i trafność proponowanej metody wykazano na podstawie przykładów dotyczących programowania nieliniowego geometrycznego oraz alokacji niezawodności.
Źródło:
Eksploatacja i Niezawodność; 2012, 14, 4; 270-277
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody dekompozycji hierarchicznej do alokacji niezawodności w dużych systemach
A hierarchical decomposition approach for large system reliability allocation
Autorzy:
Zhang, X. L.
Huang, H. Z.
Liu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/301697.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
hierarchiczna struktura systemu
optymalna alokacja niezawodności
projektowanie systemów złożonych
kaskadowanie celów
dekompozycja systemu
hierarchical system structure
optimal reliability allocation
large system design
target cascading
system decomposition
Opis:
Niezawodność stała się w ostatnich latach ważkim problemem, zwłaszcza w odniesieniu do dużych systemów składających się z wielu podsystemów, modułów i komponentów. Dążenie do osiągania niezawodności już na etapie projektu sprawiło, że coraz więcej uwagi zwraca się na alokację niezawodności. Jednakże poszukiwanie optymalnego programu alokacji niezawodności dla systemu o dużej liczbie podsystemów i części składowych nie jest sprawą prostą i problem ten należy do klasy problemów trudnych. Przeprowadzono wiele prac badających przydatność wydajnych obliczeniowo metod, np., algorytmu dokładnego, algorytmu heurystycznego czy algorytmu meta-heurystycznego, itp., do optymalizacji alokacji niezawodności systemu złożonego. I chociaż zaproponowane w dotychczasowych badaniach metody sprawdzają się w przypadku systemów składających się z umiarkowanej liczby elementów składowych, to wciąż jednak ciąży na nich "przekleństwo wymiarowości," które nie pozwala na ich łączenie w przypadku systemów składających się z dziesiątek/setek podsystemów i części składowych jakie znajdują zastosowanie w inżynierii przemysłowej. Aby zminimalizować ten niedostatek, zaproponowano strategię dekompozycji, w której problem alokacji niezawodności dla systemu o dużej liczbie komponentów jest rozkładany na zespół mniejszych, skoordynowanych podproblemów, które dają się rozwiązać w sposób obliczeniowo wydajny za pomocą tradycyjnego algorytmu optymalizacyjnego. W niniejszej pracy zastosowano metodę kaskadowania celów, jako wydajną metodę dekompozycji hierarchicznej, której użyto do rozkładu problemu alokacji niezawodności dużego systemu na zespół hierarchicznie uporządkowanych problemów optymalizacyjnych zgodnie z konfiguracją systemu. Wydajność i efektywność proponowanej metody ilustruje przykład numeryczny oraz studia porównawcze.
Reliability has become a great concern in recent years, especially for large system consisting of a large number of subsystems, modules and components. To achieve the reliability goal in design stage, reliability allocation, a method to apportion the system target reliability amongst subsystems and components in a well-balanced way, has since received increasing attention. However, seeking the optimal reliability allocation scheme for a system with bunch of subsystems and components is not straightforward, and it is known as an NPhard problem. An abundance of work has been carried out to investigate the computational effi cient methods, e.g. exact algorithm, heuristic algorithm and meta-heuristic algorithm etc., to handle the optimization of reliability allocation for the complex system. Even though the proposed methods in past research work well for system consisting of a moderate set of components, they will still suffer "curse of dimensionality" and be impossible to converge if the system consisting of tens/hundreds of subsystems and components which maybe exist in industrial engineering. To mitigate the defi ciency, a decomposition strategy is proposed, in which the reliability allocation problem for the system with a large number of components is decomposed into a set of smaller, coordinated sub-problems which can be solved via traditional optimization algorithm in an computational effi cient manner. Target cascading method, as an effi cient hierarchical decomposition method, is employed in this paper to decompose the large system reliability allocation problem into a set of hierarchical optimization problems in according with the system confi guration. To illustrate the effi ciency and effectiveness of the proposed method, a numerical example is presented, as well as some comparative studies.
Źródło:
Eksploatacja i Niezawodność; 2009, 3; 32-37
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies