Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "systemy neuronowe" wg kryterium: Temat


Tytuł:
Zastosowanie teorii systemów hierarchicznych do analizy sztucznych sieci neuronowych
Application of the Theory of Hierarchical Systems to Analyse Artificial Neural Networks
Autorzy:
Płaczek, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/440175.pdf
Data publikacji:
2015
Wydawca:
Akademia Finansów i Biznesu Vistula
Tematy:
Sztuczne Sieci Neuronowe
hierarchiczne struktury
dekompozycja
koordynacja
systemy złożone
artificial neural networks
hierarchical structures
decomposition
coordination
complex systems
Opis:
Sztuczne Sieci Neuronowe (SSN) okazały się wygodnym narzędziem, przydatnym przy realizacji bardzo wielu różnych praktycznych zadań inżynierskich, ekonomicznych finansowych, medycznych i innych. SSN mogą być zastosowane tame, gdzie pojawiają się problemy z przetwarzaniem i analizą danych, prognozą, klasyfikacją czy sterowaniem. Sukces spowodowany jest tym, że w tych zastosowaniach SSN pełni rolę uniwersalnego aproksymatora nieliniowej, wektorowej funkcji wielu zmiennych. Podstawowym problemem jest efektywne uczenie złożonej konfiguracji sieci, jaką niewątpliwie jest struktura wielowarstwowej sieci neuronowej o wielu wejściach i wyjściach. Uczenie polega na poszukiwaniu minimum globalnej funkcji celu, którą najczęściej definiujemy jako błąd średniokwadratowy wyjścia sieci i warto-ści zadanej. Zadanie nie jest trywialne i ze względu na wielowymiarowość wektorów wejścia i wyjścia oraz wielowarstwowość sieci. Z tego też względu szuka się rozwiązań w sieciach o strukturze z jedną warstwą ukrytą. W celu wykorzystania możliwości sieci wielowarstwowych, do analizy złożonych struktur zastosowano metody i techniki opracowane dla wielowarstwowych, hierarchicznych struktur technicznych. Systemy hierarchiczne występują nie tylko w przyrodzie, lecz również w organizacjach ludzi. Tego typy struktury są bardzo efektywne z punktu widzenia zarządzania i kierowania organizacjami. Z systemami hierarchicznymi związane są zagadnienia dekompozycji dużego, podstawowego systemu na podsystemy oraz umiejętne skoordynowanie rozwiązań cząstkowych, w celu otrzymania rozwiązania optymalnego dla całego systemu. W artykule przedstawiono próbę zastosowania dekompozycji oraz koordynacji w stosunku do SSN o złożonej, wielowarstwowej strukturze. Dekomponując strukturę sieci oraz algorytm uczenia na podzadania, analizuje się wymagania, które musi spełnić algorytm w celu efektywnej koordynacji rozwiązań cząstkowych. Tak więc problem koordynacji jest problemem centralnym w analizie i konstrukcji algorytmu uczenia SSN. Artykuł ma charakter koncepcyjny.
Artificial neural networks (ANN) have appeared to be a convenient tool, useful for implementation of very many practical engineering, economic, financial, medical, and other tasks. ANN may be applied where the problems with data processing and analysis, forecast, classification or steering appear. The success is caused by the fact that in these applications ANN plays the role of universal approximator of the non-linear, vectored function of many variables. The basic problem is an effective teaching of the complex configuration of the network which, no doubt, the structure of multilayer neural network with many inputs and outputs is. Teaching consists in seeking for the minimum global function of the purpose, which is most oft en defined as a mean squared error of the network input and the set-point. The task is not trivial also due to the multidimensionality of vectors of input and output as well as due to the multilayer nature of the network. Also having this in mind, there are attempts to fi nd solutions in networks with the structure with one hidden layer. In order to make use of the possibilities of multilayer networks, the author applied for the analysis of complex structures the methods and techniques developed for multilayer, hierarchical technical structures. Hierarchical systems take place not only in the nature but also in human organisations. Such structures are very effective from the point of view of organisation management and direction. The hierarchical systems are combined with the issues of decomposition of a big, basic system into subsystems and a skilful coordination of partial solutions in order to obtain a solution optimal for the entire system. In his article, the author presented an attempt to apply decomposition and coordination in relation to ANN with a complex, multilayer structure. Decomposing the network structure and the algorithm of teaching into subtasks, he analyses the requirements to be met by the algorithm for the purpose of effective coordination of partial solutions. Thus, the problem of coordination is the central problem in the analysis and construction of the ANN algorithm of teaching. The article is of the conceptual nature.
Źródło:
Kwartalnik Naukowy Uczelni Vistula; 2015, 2(44); 102-116
2084-4689
Pojawia się w:
Kwartalnik Naukowy Uczelni Vistula
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do lokalizacji zwarć w liniach elektroenergetycznych
Fault location of power transmission lines using artificial neural network
Autorzy:
Łukowicz, M.
Pustułka, M.
Powiązania:
https://bibliotekanauki.pl/articles/1808041.pdf
Data publikacji:
2011
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sieci neuronowe
systemy elektroenergetyczne
cyfrowe przetwarzanie sygnałów
Opis:
The article presents the method of fault location on power transmission lines passed on artificial neural networks. Determination of fault place is based on knowledge of the fault type and measurements of voltage and current magnitudes from one end of the line. The accuracy of the method was tested for different operating conditions of 400kV power transmission line. The results confirm the high accuracy of the proposed method.
Źródło:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały; 2011, 65, 31; 453-458
1733-0718
Pojawia się w:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do lokalizacji zwarć łukowych w liniach elektroenergetycznych w warunkach nasycenia przekładników prądowych
Arc fault location on power transimssion lines under saturration of current transformer based on artificial neural network
Autorzy:
Pustułka, M.
Iżykowski, J.
Łukowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/1813972.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sieci neuronowe
systemy elektroenergetyczne
cyfrowe przetwarzanie sygnałów
Opis:
The paper presents the method of arc fault location on power transmission lines using artificial neural network. The investigation was focused on the cases of CT saturation, resulting in the current signal transformation errors. Fault location is based on measurements of voltages and currents from two ends of the line, with knowledge of fault type. The accuracy of the location method was tested for different operating conditions of 400 kV power transmission line modeled in EMTP.
Źródło:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały; 2013, 69, 33; 514--525
1733-0718
Pojawia się w:
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej. Studia i Materiały
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod fuzji danych w zarządzaniu zasobami radaru wielofunkcyjnego
The Application of the Data Fusion Methods in the Multifunction Radar Resources Management
Autorzy:
Komorniczak, W.
Kawalec, A.
Pietrasiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/210695.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
radar wielofunkcyjny
fuzja danych
sieci neuronowe
systemy rozmyte
multifunction radar
data fusion
neural networks
fuzzy logic
Opis:
W referacie poruszono tematykę związaną z zarządzaniem zasobami radaru wielofunkcyjnego. Jako jeden z elementów tego procesu wyróżniono priorytetyzację (rangowanie) zadań realizowanych przez radar. Rangowanie jest wymuszone przez potencjalnie niedostateczne zasoby wymagane do realizacji wszystkich zadań radaru, stąd konieczność szeregowania obsługiwanych przezeń obiektów zgodnie z ich istotnością. W referacie scharakteryzowano dane źródłowe zasilające proces rangowania oraz przedstawiono algorytmy przetwarzania tych danych. Zaprezentowane algorytmy oparto na wybranych metodach fuzji danych. Przedstawiono przebieg i wyniki badań procesu rangowania oraz wyniki badań wpływu zastosowania rangowania na niektóre parametry zarządzania zasobami radaru wielofunkcyjnego.
The paper deals with the problem of the multifunction radar resources management (RRM). The objectives of RRM are: optimal (from the radar performance point of view) resources allocation and the device operation control. As a result of RRM, it is expected a matrix containing information for the execution systems: " what, when, and how to do. The main constraints to deal with in the radar work are: time and energy limitations. If it is enough resource to execute all the tasks, the tasks execution is feasible. But in real situation one should not expect such a comfort. Typically neither time nor energy is enough and the questions arises what to do in these circumstances. It is obvious that only selected tasks can be executed, the RRM should answer which of them and in what order. To answer these questions, the structure of the RRM was proposed. First of all it is necessary to rank the tasks in order of their priorities, then to select the most important of them and schedule their execution. RRM is decomposed into two sub-problems, e.g.: ranking and task scheduling. The ranking belongs to the identification problems class, while the scheduling can be treated as an optimization task. The paper presents the data fusion approach to the task ranking. There are numerous examples of utilization of the data fusion tools in order to solve the identification problems. The conclusions from these examples can be following: the neural networks which have the ability to learn from the presented examples have also disadvantage of impossibility of extraction of the gathered knowledge. The internal processes of reasoning are neither well described nor studied, so they are not a good tool for military application, which the multifunction radar is. Fuzzy logic systems (based on the fuzzy sets theory and fuzzy logic) have the advantage of good and clear knowledge representation and ability to relatively easy implementation of the expert knowledge. The good side of the fuzzy systems is their possibility of maintaining and fusion of the imperfect knowledge. The disadvantage is the lack of ability to learn whole the knowledge from the examples. Some hybrid solutions are necessary. Four solutions are presented in the paper: neural, fuzzy, fuzzy — neural and probabilistic — fuzzy. In order to implement data fusion tools, the base test platform was designed and implemented. In fact, the test platform is a complex process of multifunction radar resources management, as well as it deals with the task scheduling problem. In order to evaluate the algorithms presented in the paper, some factors of radar work performance were defined. Presented ranking algorithms have capability of learning with use of the registered data learning set. Algorithms with their knowledge bases were tested and compared. The conclusion is following: the use of ranking process gives approximately two times better performance in task removal/delay aspect. On the other hand, the quality of algorithm (its accuracy) has lower influence on the final result. It means that for the use in radar application the algorithm with the best convergence during learning process and stability should be recommended. It is also important that the algorithm should have clear knowledge representation. These requirements meet two of the presented algorithms: neural - fuzzy and probabilistic - fuzzy. The first one was used against the positional data, the second one gave the best results for identification data. It is important, that overall performance of the presented RRM and ranking algorithms was tested with the use of real registered data, what makes it very interesting from the application point of view.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2006, 55, 1; 55-75
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zarządzanie nieruchomościami z wykorzystaniem kognitywnej maszyny wnioskującej
Real estate management using a cognitive reasoning machine
Autorzy:
Nowak-Nova, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/23050824.pdf
Data publikacji:
2023-03-20
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
Automatyczne Modele Wyceny
zarządzanie nieruchomościami
uczenie maszynowe
sieci neuronowe
systemy kognitywne
Automated Valuation Models
real estate
Machine Learning
Neural Networks
Cognitive Systems
Opis:
W artykule przedstawiono możliwość zastosowania Automatycznych Modeli Wyceny (AVMs), rozszerzonych o technologie algorytmów uczenia maszynowego i sztuczne sieci neuronowe, do przetwarzania kognitywnego w obszarze Facility Management. Opisano eksperymenty symulujące w procesach operacyjnego zarządzania nieruchomością, zachowania AVMs w kognitywnej maszynie wnioskującej. Badano poprawność działania algorytmów usług decyzyjnych wywoływanych przez zautomatyzowane silniki wnioskujące dla generalizacji informacji o nieruchomości oraz procesu planowania wykorzystującego algorytmy. Kluczowe wnioski z badania potwierdzają, że przyjęcie dla AVMs perspektywy kognitywnej i zastosowanie technologii algorytmów i sztucznych sieci neuronowych w operacyjnym zarządzaniu nieruchomością zwiększa produktywność procesów, tym samym przynosi korzyść zarządzającemu.
The article presents the possibility of using Automatic Valuation Models (AVMs), extended with technologies of Machine Learning algorithms and Neural Networks, for cognitive processing in the area of Facility Management. Experiments simulating, in the processes of operational management of real estate, of AVMs’s behavior in a cognitive reasoning machine, have been described. The correctness of operation of decision service algorithms, triggered by automated inference engines, has been examined for generalization of information on the property and the planning process using the algorithms. The key findings of the study confirm that the adoption of a cognitive perspective for AVMs and the application of algorithm technology and artificial neural networks in the operational management of real estate, increases the productivity of the processes, and, thus brings benefits the managing entity.
Źródło:
Nowoczesne Systemy Zarządzania; 2023, 18, 1; 29-48
1896-9380
2719-860X
Pojawia się w:
Nowoczesne Systemy Zarządzania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych przez przedsiębiorstwa eksportujące oraz importujące
The usage of artificial neural networks by export and import enterprises
Autorzy:
Jasiński, T.
Powiązania:
https://bibliotekanauki.pl/articles/339733.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Zarządzania Produkcją
Tematy:
sztuczne sieci neuronowe
systemy transakcyjne
artificial neural networks
exchange rate
trading system
Opis:
The paper raises issues of the use of artificial intelligence in the enterprise. The focus was on the possibility of using artificial neural networks to accurately predict the behavior of the time series relevant to the economic activities based on the export and import. In particular, the paper describes the practical possibilities for time series forecasting such as foreign exchange rates. Researches focused on predicting of slope of linear regression, to determinate the direction of exchange rate changes. Artificial neural networks, tested during researches, included two types of models. First one was a simple neural network model, containing only a one network. Second one was a more complex model containing at least a few networks. These networks were used for predicting a part of output variable. To obtained mentioned parts during researches was used multiresolution analysis based on discrete wavelet trans- form. During researches a lot of versions of multiresolution analysis were tested. Finally, as the best one, was chosen the discrete wavelet transform based on the biorthogonal 6/8 wavelet. The paper describes also a type of model input variables, considering a frequency of their changes. It shows advantages and disadvantages of macroeconomic data and technical analysis. The article describes main and the most useful types of moving averages, such as simple moving average, exponential moving average, weighted moving average and VI- DYA (Variable Index Dynamic Average). The paper mentions other type of input variable, especially such indicators as RSI and MACD and their modifications. The final evaluation of the models was carried out based on a simple trading system. Thus was confirmed the useful- ness of the results in practical applications. During the analysis of the obtained results, was used the method of sliding window.
Źródło:
Zarządzanie Przedsiębiorstwem; 2014, 17, 1; 37-40
1643-4773
Pojawia się w:
Zarządzanie Przedsiębiorstwem
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using hybridized techniques to develop an online workplace risk assessment tool
Użycie technik hybrydowych w implementacji systemu online do oceny stresu w miejscu pracy
Autorzy:
Ghosh, A.
Nafalski, A.
Tweedale, J.
Dollard, M.
Powiązania:
https://bibliotekanauki.pl/articles/408265.pdf
Data publikacji:
2012
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
stres w miejscu pracy
inteligentny agent
system wieloagentowy
systemy neuronowe
logika rozmyta
work stress
agent
multi-agent system
neural network
fuzzy logic
Opis:
Recent research has shown that work stress has become a widespread concern in Australia and other countries. It is a growing concern across all employment sectors as well as occupational levels and reported as a common cause of occupational illness. Work stress can be prevented if it is identified, measured and changes are made to the work environment. Multi-Agent technology has been used in many applications but has not been applied in psychology for analysing data. This paper presents hybridized techniques, which have been used to develop an online tool for work stress assessment and prevention.
Ostatnie badania wykazały, że stres w miejscu pracy stał się przedmiotem rosnących obaw w Australii i w innych krajach. Wszystkie sektory zatrudnienia doświadczają wzrostu psychicznych chorób zatrudnieniowych. Stres w miejscu pracy może być uniknięty jeśli jest identyfikowany, mierzony i stosowne zmiany są implementowane w środowisku pracy. Technologia systemów wieloagentowych jest używana w wielu aplikacjach, lecz nie była dotąd zastosowana w psychologii do analizy danych. Artykuł prezentuje techniki hybrydowe, zastosowane do oceny online i prewencji stresu.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2012, 4b; 42-45
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using artificial immune and case-based reasoning methods in classification of treatment effectiveness
Autorzy:
Badura, D.
Ferdynus, D.
Powiązania:
https://bibliotekanauki.pl/articles/333874.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wnioskowanie bazujące na przykładach
sztuczne systemy immunologiczne
sieci neuronowe rozmyte
case-based reasoning
artificial immune system
fuzzy neural nets
Opis:
The article concerns the analysis of classification of medical data by use of selected method of artificial intelligence: case-based reasoning. The subject of the research is the assessment of effective treatment, being one of the most important medical problems. The basis work of the assessment system should be one of the classification methods. The aim of the attempted research is to study which of the enumerated method will be able to group data containing incomplete information in the best way. The classified data are descended from the patients with nephroblastoma and patients with backbone pain. The final aim of the research is to work out the functioning method of the learning system, assisting the doctor with making a decision during working out on patient's treatment therapy, and making analyses of the treatment effectiveness. On the basis of the medical tests, the system will classify the data assigning them to the appropriate therapy groups. Moreover, in the system will be used artificial immunology as the method of generalizing or extrapolating of the gathering and considering so far cases.
Źródło:
Journal of Medical Informatics & Technologies; 2007, 11; 221-226
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The dedicated decision support system in recognition of some uncertain disease entities
Autorzy:
Porwik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333041.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazu
klasyfikacja danych
sieci neuronowe
systemy wspomagania decyzji
image recognition
data classification
neural network
decision support systems
Opis:
This work presents the principles of image recognition, where quality-based methods are applied. The neural networks and additional software have been proposed. This goal was achieved by using non-parametric recognition algorithms. In this paper the two-state hybrid classification method has been proposed, where artificial intelligence algorithm is included. In recognition process, the learning method, selection and optimization of diagnostic parameters have been introduced. The integrated part of the classifier structure is voting mechanism, which indicates incorrect states of the system – for example the unrecognized images. Effectiveness of the system has been shown by means of examples, where ambiguous data have been incorporated – it is very often a practice of medical diagnostics.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 97-100
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny PiAO2 jako narzędzie wspomagające bezwzorcową neuronową klasyfikację pomidorów
Computer system PiAO2 as a tool for assist neural classification of tomatoes without supervision
Autorzy:
Boniecki, P.
Zaborowicz, M.
Przybył, K.
Pilarski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336447.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pomidory
analiza obrazu
sztuczna inteligencja
sieci neuronowe
systemy informatyczne
tomatoes
image analysis
artificial intelligence
neural networks
computer systems
Opis:
Analiza obrazów oraz pozyskiwanie danych zawartych w obrazach cyfrowych są istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy modeli neuronowych. Wraz z rozwojem komputerowej analizy obrazu możliwe jest pozyskiwanie coraz większej ilości danych. Dlatego zasadne jest tworzenie nowych oraz modyfikowanie istniejących systemów informatycznych, wspierających neuronową analizę obrazów o nowe funkcje, zwiększające użyteczność tych aplikacji.
Image analysis and gathering data from digital images is an important element in process of generating learning sets for the construction of the neural models. With the development of computer image analysis it is possible to obtain more data. This is a reason to create and develop computer systems that support neural image analysis and increase usability of this software.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 26-28
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny HISTLAB 2013 v.2.0 wspomagający ocenę geometryczną płodów rolnych
HISTLAB v.2.0 system for assist geometrical assessment of crops
Autorzy:
Przybyl, K.
Mlynski, D.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/883449.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
plody rolne
ocena jakosci
parametry geometryczne
identyfikacja
fotografia cyfrowa
cyfrowa analiza obrazu
sieci neuronowe sztuczne
systemy informatyczne
system HISTLAB
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2014, 4
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Self optimizing neural network - as expert system in medical heart attack.
Autorzy:
Popa, A.
Wojczyk, S.
Lizis, M.
Powiązania:
https://bibliotekanauki.pl/articles/333471.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sieci neuronowe
systemy eksperckie
choroby serca
neural network
expert systems
heart diseases
Opis:
The main aim of Self Optimizing Neural Network (SONN), which are presented in this paper, is construction of expert system on the basis of analysis of medical information about group of patients. The expert system is built on the basis of neural network, and the main task of this system is to expect future patient health, based on information about the patient. Such a system can give the doctors a hint about that what can be happen with patient. And what is more important - the SONN construction process is very flexibly and adapts topology and all weights to training data. This is undoubtedly a great advantage of this type of neural network. Moreover the construction process is quite simple. The network topology and all connections between neurons can be easy implemented and kept in such a way, which allows to create very efficient expert system. In this paper we describe the process of construction of neural network which is based on one-shot analysis of learning patterns. On the basis of appropriate computation the SONN topology is built. The construction process can be repeated on the learning group of patients. In this way the expert system (based on SONN) will be better and better.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 77-82
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie systemów rozmytych i sztucznych sieci neuronowych
Comparison of fuzzy logic systems and artifical neural networks
Autorzy:
Charlak, M.
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/395144.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe
systemy rozmyte i sztuczne
Opis:
W pracy opisano podstawowe pojęcia dotyczące podstawowego modelu matematycznego systemów neurorozmytych potraktowanych jako tzw. „czarna skrzynka” oraz różnych jego wersji. W skrócie przedstawiono wybrane kierunki badań dotyczących fuzji obu technologii. Praca zawiera elementarny opis nowej klasy systemów tzw. inteligencji obliczeniowej.
In this article we short describe fundamental mathematical model of neuro-fuzzy system treat as ‘black box’ known in cybernetic and various version of this fundamental model. Short we characterize some direction in the research about fusion two technology: fuzzy systems and artificial neural systems. In our article we short describe elementary notion: new technology: computational intelligence.
Źródło:
Postępy Nauki i Techniki; 2010, 4; 54-64
2080-4075
Pojawia się w:
Postępy Nauki i Techniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie cząstkowych modeli parametrycznych w zadaniu detekcji uszkodzeń sieci gazowej
Comparison of particular parametric models for faults detection in gas pipeline
Autorzy:
Syfert, M.
Jankowska, A.
Łabęda-Grudziak, Z.
Tabor, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/155924.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja uszkodzeń
modele cząstkowe
modele parametryczne
addytywne modele regresyjne
sztuczne sieci neuronowe
systemy rozmyte
faults detection
particular models
parametric models
additive regression models
artificial neural networks
fuzzy systems
Opis:
Zreferowano badania detekcji uszkodzeń gazociągu z użyciem cząstkowych modeli parametrycznych. Stosując trzy metody modelowania: addytywne modele regresyjne (najnowszą z badanych technik), sztuczne sieci neuronowe oraz układy rozmyte typu TSK opracowano aproksymacje ciśnień w węzłach sieci. Modele testowano w zadaniu detekcji wycieku oraz uszkodzenia czujnika pomiarowego. Wszystkie modele zapewniały dużą dokładność aproksymacji ciśnienia w poprawnych stanach pracy, wykazując także bardzo skuteczną detekcję uszkodzeń czujników pomiarowych ciśnień, natomiast w sytuacji symulowanych wycieków ich przydatność w detekcji była znacznie mniejsza.
The results of faults detection [1, 2, 3, 4, 5] in a gas system network (Fig. 1) with use of parametric partial models [6, 7, 8] are presented in the paper. This is a new approach to the task with use of exploratory data analysis [10, 11, 17] and partial models. Three techniques were used to build models of pressure in network nodes: additive regression (ADD - new method of modelling [10, 11, 12, 13, 14, 15]), artificial neural networks (ANN) [16, 17, 18] and TSK fuzzy logic modelling [8, 16, 17]. The measured pressures in adjacent nodes as well cumulative flows in the main line (from global analytical model [9]) of gasoline were the inputs of the models. For the analysed stations (in parts A and B marked in Fig. 1) a set of test failures in the form of leaks and damage of pressure sensors is given in Tab. 1.Using trial and error method, by evaluating the effectiveness of fault detection, there were obtained structures of models of different complexity for individual modelling techniques: ADD - presented by equations (1) and (2), ANN- (3) and (4), TSK- (5) and (6). The model order is not greater than 2. The exemplary results of leak detection with use of particular models are shown in Figs. 3, 5, 7 and of sensor fault detection in Figs. 4, 6, 8. In the conclusions there is summarised the relative accuracy of models (in Table 2), the relative normalized values of the studied residues of leaks - Tab.3 and the pressure sensor failures - Tab. 4. All models provided highly precise pressure approximation in non-fault states, but TSK and ADD models turned out to be the more accurate. Additionally, all of them were effective in case of pressure sensor fault detection, however, in case of simulated leakages their usefulness was much lower.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 1, 1; 3-8
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O użyteczności sieci neuronowych i algorytmów genetycznych w realizacji inwestycyjnych systemów decyzyjnych
Usefulness of neutral networks and genetic algorithms in the development of investment decision systems
Autorzy:
Morajda, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/415790.pdf
Data publikacji:
2006
Wydawca:
Małopolska Wyższa Szkoła Ekonomiczna w Tarnowie
Tematy:
metody sztucznej inteligencji
algorytmy genetyczne
sieci neuronowe
rynki finansowe
systemy decyzyjne
zarządzanie portfelem inwestycyjnym
artificial intelligence methods
genetic algorithms
neural networks
financial markets
decision support systems
portfolio management
Opis:
W artykule omówiono podstawowe aspekty realizacji aktywnych strategii inwestycyjnych na rynkach finansowych z wykorzystaniem systemów wspomagania decyzji (systemów transakcyjnych), w kontekście klasycznych teorii zarządzania portfelem inwestycyjnym. Wskazano zasadnicze przesłanki zastosowania metod sztucznej inteligencji, takich jak sieci neuronowe i algorytmy genetyczne, do konstrukcji inwestycyjnych systemów decyzyjnych. Przedstawiono charakterystykę sieci neuronowych oraz algorytmów genetycznych jako efektywnych narzędzi w modelowaniu i prognozowaniu rynków finansowych.
The paper discusses basic aspects of application of active investment strategies in financial markets - in the context of classic theories of portfolio management. Such active strategies are generated with the use of decision support systems (transaction systems). The main assumptions of utilisation of artificial intelligence methods, such as neural networks and genetic algorithms, in the construction of investment decision systems have been indicated. The characteristic of neural networks and genetic algorithms as effective tools in financial markets modelling and prediction has also been discussed here.
Źródło:
Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie; 2006, 1(9); 217-230
1506-2635
Pojawia się w:
Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies