Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "systemy neuronowe" wg kryterium: Temat


Tytuł:
Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements
Autorzy:
Kitajima, R.
Kamimura, R.
Powiązania:
https://bibliotekanauki.pl/articles/91614.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
information
neural systems
computational method
artificial data set
mission
statement
informacja
systemy neuronowe
metoda obliczeniowa
zbiór danych
misja
komunikat
Opis:
This paper proposes a new information-theoretic method based on the information enhancement method to extract important input variables. The information enhancement method was developed to detect important components in neural systems. Previous methods have focused on the detection of only the most important components, and therefore have failed to fully incorporated the information contained in the components into learning processes. In addition, it has been observed that the information enhancement method cannot always extract input information from input patterns. Thus, in this paper a computational method is developed to accumulate information content in the process of information enhancement. The method was applied to an artificial data set and the analysis of mission statements. The results demonstrate that while we were able to explicitly extract the symmetric properties of the data from the artificial data set, only one main factor was able to be extracted from the mission statement, namely, “contribution to the society”. The companies with higher profits tend to have mission statements concerning the society. The results can be considered to be a first step toward the full clarification of the importance of mission statements in actual business activities.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 3; 161-176
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
Skin lesion features analysis for malignant melanoma classification
Autorzy:
Mikołajczyk, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268540.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytm ewolucyjny
uczenie maszynowe
sieci neuronowe
systemy wspomagania decyzji
evolutionary algorithm
neural networks
decision support system
machine learning
Opis:
Pomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak najlepszej dokładności klasyfikacji znamion skórnych. Algorytm zwraca optymalny zestaw cech opisujących obraz dermatoskopowy wraz z proponowaną architekturą sieci neuronowej. Uzyskano dokładność równą 85,83%, swoistość równą 79,07% oraz czułość równą 92,60%.
Despite the dynamic development of machine learning methods, automatic analysis of skin lesions is still open issue. The following article proposes the use of an evolutionary algorithm to design, train, and to test a whole population of classifiers (artificial neural networks) and to iteratively improve them in each subsequent population, in order to achieve the best possible accuracy in the classification of skin lesions task. The algorithm returns an optimal set of features describing the dermatoscopic image together with the proposed architecture of the neural network. High classification results were obtained, in particular: accuracy equal to 85.83%, specificity 79.07% and sensitivity 92.60%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Multilayer Perceptron for the Calculation of Pressure Losses in Water Supply Lines
Zastosowanie perceptronu wielowarstwowego do obliczeń strat ciśnienia w przewodach wodociągowych
Autorzy:
Czapczuk, A.
Dawidowicz, J.
Piekarski, J.
Powiązania:
https://bibliotekanauki.pl/articles/1813822.pdf
Data publikacji:
2017
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution systems
artificial intelligence
expert systems
artificial neuronal networks
heuristic methods
calculation of pressure losses
systemy dystrybucji wody
sztuczna inteligencja
systemy ekspertowe
sztuczne sieci neuronowe
metody heurystyczne
obliczenia strat ciśnienia
Opis:
Numerical methods have been widely used for many years in the design and operation of water supply systems. Specialised computer programmes offer more and more facilities, especially for data entry and viewing, but they still function on the basis of predetermined algorithms. At present, however, we strive to create computational programmes with a certain degree of creativity, which should make it easier for users to make decisions at various stages of the task and improve the quality of their solutions. The increasing power of computers will not solve complex problems alone. Only by introducing appropriate calculation methods can we obtain the right results. It seems that classical algorithms with a formalised course can be supplemented, nowadays, with far more advanced computational techniques. This paper presents an literature review on the use of artificial neural networks in the design and operation of water distribution systems. Presented in the second part of the paper, is an overview of the artificial neural network, developed for the calculation of pressure losses in water supply lines. The calculation of hydraulic piping with the EPANET programme for various input parameters resulted in a collection of 16,260 training examples. Input parameters of the neural network include pipe length, measurable flow, absolute roughness coefficient and the nominal diameter. Very high compatibility was obtained between the calculation results for those pressure losses obtained from the EPANET programme and those obtained from the multi-layered perceptron with one hidden layer.
Metody numeryczne stosuje się powszechnie od wielu lat w projektowaniu i eksploatacji systemów zaopatrzenia w wodę. Specjalistyczne programy komputerowe oferują coraz więcej udogodnień, szczególnie w zakresie wprowadzania danych oraz przeglądania wyników, lecz nadal funkcjonują na podstawie z góry określonych algorytmów. Obecnie dąży się jednak do stworzenia programów obliczeniowych, które będzie charakteryzować pewien stopień kreatywności, co powinno ułatwić użytkownikom podejmowanie decyzji na różnych etapach realizacji zadania i poprawić jakość rozwiązań. Zwiększająca się moc obliczeniowa komputerów samoistnie nie rozwiąże złożonych problemów. Dopiero wprowadzanie odpowiednich metod obliczeniowych, pozwala uzyskać właściwe efekty. Wydaje się, że klasyczne algorytmy o sformalizowanym przebiegu, można obecnie uzupełnić znacznie bardziej zaawansowanymi technikami obliczeniowymi. W niniejszej pracy dokonano przeglądu literatury w zakresie zastosowania sztucznych sieci neuronowych w projektowaniu systemów dystrybucji wody. W drugiej części artykułu zamieszczono omówienie sztucznej sieci neuronowej do obliczeń strat ciśnienia w przewodach wodociągowych. W wyniku obliczeń hydraulicznych przewodów wodociągowych za pomocą programu EPANET dla różnych wartości parametrów wejściowych uzyskano zbiór 16260 przykładów uczących. Parametry wejściowe sieci neuronowej to długość przewodu, przepływ miarodajny, współczynnik chropowatości bezwzględnej oraz średnica nominalna. Uzyskano bardzo wysoką zgodność pomiędzy wynikami obliczeń strat ciśnienia z programu EPANET i perceptronu wielowarstwowego z jedną warstwą ukrytą.
Źródło:
Rocznik Ochrona Środowiska; 2017, Tom 19; 200-210
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building computer vision systems using machine learning algorithms
Autorzy:
Boyko, N.
Sokil, N.
Powiązania:
https://bibliotekanauki.pl/articles/410768.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
algorithm
information system
neural network
machine learning
client-server architecture
script
artificial system
machine learning algorithms
algorytm
systemy informacyjne
sieci neuronowe
systemy uczące
architektura klient-serwer
skrypt
Opis:
In this paper theoretic aspects of machine learning system in the field of computer vision is considered. There are presented methods of behavior analysis. There are offered tasks and problems associated with building systems using machine learning algorithm. The paper provides signs of problems that can be solved by using machine learning algorithms There is demonstrated step by step construction of computer vision system. The paper provides the algorithm of solving the problem of binary (two classes) classification for demonstration the machine learning algorithm possibilities in image recognition field, which can recognize the gender of the person on the photo. Aspects related to the search of data processing are also considered. There is analyzed the search of optimal parameters for algorithms. An interpretation of results in machine learning algorithm is provided. Binarization methods in machine learning algorithm are offered. There is analyzed the technology for improving the accuracy of machine learning algorithm. There are proposed ways to improve computer vision system in neural systems. Also there are analyzed large software modules that work using machine learning systems. The article provides prospects of powerful information technologies, which are necessary for the proper data selection in learning and configuration of feature extraction algorithm to create a computer vision system.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 2; 15-20
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational intelligence methods in the problem of modelling technical wear of buildings in mining areas
Metody inteligencji obliczeniowej w problemie modelowania stopnia zużycia technicznego budynków na terenach górniczych
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385956.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
technical wear
neural networks
support vector machine (SVM)
fuzzy systems
szkody górnicze
zużycie techniczne
sieci neuronowe
systemy rozmyte
Opis:
In the work presented approach with a view to building the model of degree of technical wear of buildings in the mining areas, as well as an indication that the contribution of the consumption on technical factors interact mining and civil construction origin. Set out criteria for the selection and research methodology effects are synthetically summarised existing work in this field. Justified choice of the ϵ-SVR method confronting its advantages to the characteristics of typical neural network.
W artykule zaprezentowano podejście mające na celu budowę modelu przebiegu stopnia zużycia technicznego budynków na terenach górniczych, jak również analizowano, w jakim stopniu na zużycie techniczne oddziałują czynniki górnicze oraz ogólnobudowlane. Przedstawiono kryteria doboru metodyki badań oraz podsumowano efekty dotychczasowych prac w tej dziedzinie. Uzasadniono wybór metody &vepsilon;-SVR, konfrontując jej zalety z własnościami typowych, jednokierunkowych sieci neuronowych. Opisano sposób optymalnego doboru parametrów charakteryzujących złożoność modelu ϵ-SVR oraz wskazano możliwość zastosowania tak utworzonego modelu w systemach ekspertowych.
Źródło:
Geomatics and Environmental Engineering; 2012, 6, 3; 83-91
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detekcja nieszczelności kotła fluidalnego z użyciem modeli rozmyto-neuronowych
Approach to boiler leak detection with fuzzy neural models
Autorzy:
Szadkowski, B.
Jankowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/257517.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
detekcja awarii
systemy rozmyto-neuronowe
kocioł fluidalny
modelowanie
detection of outage
fuzzy-neural system
fluidised bed boiler
modelling
Opis:
Zreferowano badania modelowe nad detekcją nieszczelności kotłów fluidalnych z wykorzystaniem danych z archiwum. Modelowanie prowadzono w przyborniku Fuzzy Logic pakietu Matlab. Omówiono dwa podejścia do rozwiązania problemu. W pierwszym - opracowano modele rozmyto-neuronowe typu Takagi-Sugeno-Kanga (TSK) 4 zmiennych procesowych o dużej wrażliwości na przeciek. Uśrednione residua tych zmiennych, w przesuwnym oknie czasowym, pozwoliły wykryć 7 z 8 rozważanych przypadków nieszczelności. Oceniono długość okna i uzyskane wyprzedzenie detekcji względem wyłączenia bloku. Następnie opracowano i przetestowano model awarii o binarnym wyjściu. Równoległe wykorzystanie opracowanych modeli pozwoliło na wykrycie z kilkudniowym wyprzedzeniem wszystkich analizowanych awarii, potwierdzając przydatność modeli TSK w ważnym zadaniu eksploatacyjnym. Wskazano dalsze kierunki prac.
The research results into leak detection in a fluidised bed boiler are presented. The studies took advantage of the historical data from DCS in the professional power plant. Models of neuro-fuzzy Takagi-Sugeno-Kanga (TSK) type were built and tested in the Fuzzy Toolbox of Matlab. The roots of boiler outage (in water-steam pressure system and aside from this system) are indicated. The two approaches to leak detection task are described. In the first, the models of the 4 process variables sensitive to leakage were built. The residues of these models were evaluated in a moving time window. The length of the time window and the advance of leakage detection are discussed. Next, the model the TSK of the boiler faults with binary output was built and tested. Training data was collected for 3 cases of raised outage (models output - 1) and the normal work of installation (models output - 0). The parallel usage of proposed TSK models provided a successful detection of all studied fault cases a few days in advance. This has confirmed the suitability of the fuzzy neural models in an important exploitation task.
Źródło:
Problemy Eksploatacji; 2011, 2; 181-188
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discrete Fractional Order Artificial Neural Network
Autorzy:
Sierociuk, D.
Sarwas, G.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/386578.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe
systemy nieliniowe
artificial neural networks
nonlinear systems
Opis:
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
Źródło:
Acta Mechanica et Automatica; 2011, 5, 2; 128-132
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Employment of neural network based classifier for intrusion detection
Autorzy:
Vaitsekhovich, L.
Golovko, V.
Powiązania:
https://bibliotekanauki.pl/articles/386338.pdf
Data publikacji:
2008
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
systemy wykrywania włamań
sieci neuronowe
intrusion detection systems (IDS)
neural networks
Opis:
Most current Intrusion Detection Systems (IDS) examine all data features to detect intrusion. Also existing intrusion detection approaches have some limitations, namely impossibility to process a large number of audit data for real-time operation, low detection and recognition accuracy. To overcome these limitations, we apply modular neural network models to detect and recognize attacks in computer networks. They are based on the combination of principal component analysis (PCA) neural networks and multilayer perceptrons (MLP). PCA networks are employed for important data extraction and to reduce high dimensional data vectors. We present two PCA neural networks for feature extraction: linear PCA (LPCA) and nonlinear PCA (NPCA). MLP is employed to detect and recognize attacks using feature-extracted data instead of original data. The proposed approaches are tested with the help of KDD-99 dataset. The experimental results demonstrate that the designed models are promising in terms of accuracy and computational time for real world intrusion detection.
Źródło:
Acta Mechanica et Automatica; 2008, 2, 4; 93-98
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Features of the implementation of computer vision in the problems of automated product quality contro
Cechy implementacji wizji komputerowej w problemach automatycznej kontroli jakości produktów
Autorzy:
Stelmakh, Nataliia
Mastenko, Ihor
Sulima, Olga
Rudyk, Tetiana
Powiązania:
https://bibliotekanauki.pl/articles/27315380.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
machine vision
intelligent technological system
quality control
neural networks
wizja maszynowa
inteligentne systemy technologiczne
kontrola jakości
sieci neuronowe
Opis:
The article analyzes the fields of application of machine vision. Special attention is focused on the application of Machine Vision in intelligent technological systems for product quality control. An important aspect is a quick and effective analysis of product quality directly at the stage of the technological process with high accuracy in determining product defects. The appropriateness and perspective of using the mathematical apparatus of artificial neural networks for the development of an intelligent technological system for monitoring the geometric state of products have been demonstrated. The purpose of this study is focused on the identification and classification of reed tuber quality parameters. For this purpose, new methods of identification and classification of quality control of various types of defects using computer vision and machine learning algorithms were proposed.
W artykule dokonano analizy obszarów zastosowań widzenia maszynowego. Szczególną uwagę zwrócono na zastosowanie widzenia maszynowego w inteligentnych systemach technologicznych kontroli jakości wyrobów. Ważnym aspektem jest szybka i skuteczna analiza jakości produktu bezpośrednio na etapie procesu technologicznego z dużą dokładnością w określaniu wad produktu. Pokazano celowość i perspektywę wykorzystania aparatu matematycznego sztucznych sieci neuronowych do budowy inteligentnego systemu technologicznego do monitorowania stanu geometrycznego wyrobów. Celem badań jest identyfikacja i klasyfikacja parametrów jakościowych rurek trzcinowych. W tym celu zaproponowano nowe metody identyfikacji i klasyfikacji kontroli jakości różnego rodzaju defektów z wykorzystaniem wizji komputerowej i algorytmów uczenia maszynowego.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 38--41
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchiczne struktury w sztucznych sieciach neuronowych
Hierarchical Structures on Artificial Neural Networks
Autorzy:
Płaczek, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/509240.pdf
Data publikacji:
2014
Wydawca:
Akademia Finansów i Biznesu Vistula
Tematy:
Sztuczne Sieci Neuronowe
struktury hierarchiczne
dekompozycja
koordynacja
systemy złożone
artificial neural networks
hierarchical structures
decomposition
coordination
complex systems
Opis:
W wielowarstwowych Sztucznych Sieciach Neuronowych (SSN), nieliniowych w swej strukturze, uczenie sieci polega na poszukiwaniu minimum globalnej funkcji celu. W realizacjach praktycznych – w funkcji celu – występują parametry dwóch lub trzech warstw ukrytych. Strojenie współczynników macierzy w warstwach W1, W2, czy też W3, odbywa się w procesie uczenia, który można traktować jako stan nieustalony SSN. Stany nieustalone w poszczególnych warstwach mają różne przebiegi dynamiczne, czyli zależności amplitudy błędu średniokwadratowego w warstwie od numeru iteracji. W praktycznych realizacjach procesu uczenia szybkość zbieżności procesu do stanu ustalonego, czyli minimum funkcji błędy, jest ważną charakterystyką, dlatego też podział SSN na niezależne poziomy, zdefiniowanie lokalnych funkcji celu dla każdej warstwy, skoordynowanie lokalnych procesów uczenia w celu osiągnięcia globalnego minimum ma praktyczny głęboki sens. W artkule podejmuje się próbę zastosowania ogólnej teorii złożonych systemów do opisu SSN, budowy algorytmów uczących i ich praktycznej realizacji. Tego typu podejście prowadzi do poszukiwania rozwiązań poprzez dekompozycję i koordynację w hierarchicznej strukturze SSN. Ze względu na występujące nieliniowości w poszczególnych warstwach sieci, trudno udowodnić warunki zbieżności dla stosowanych metod. Tym niemniej, praktyka realizacji różnych algorytmów pokazuje przydatność przyjętych rozwiązań.
On multi-layer artificial neural networks (ANN), non-linear in their structure, network teaching consists in seeking for global minimum function of the objective. In practical implementations – in the objective’s function – there are occurring parameters of two or three hidden layers. Tuning matrix coefficients in the layers W1, W2 or W3 takes place in the teaching process which can be treated as an ANN transient state. Transient states in individual layers have different dynamic courses, i.e. dependency of the amplitude of mean squared error in the layer on the number of iteration. In practical implementations of the teaching process, the speed of process convergence to the steady state, i.e. the minimum of the error function, is an important characteristic, hence the division of ANN into independent levels, defining the local functions of the objective for every layer, coordination of the local teaching processes in order to achieve the global minimum is of practical deep sense. In his article, the author made an attempt to apply the general theory of complex systems to describe ANN, to build teaching algorithms and their practical implementation. Such an approach leads to pursuit of solutions through decomposition and coordination in the ANN hierarchical structure. Due to the occurring nonlinearities in individual layers of the network, it is difficult to prove the convergence conditions for the methods applied. Nonetheless, the practice of implementation of various algorithms indicates usefulness of the adopted solutions.
Źródło:
Zeszyty Naukowe Uczelni Vistula; 2014, 38/2014 Informatyka; 20-37
2353-2688
Pojawia się w:
Zeszyty Naukowe Uczelni Vistula
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid neuro-fuzzy classifier based on NEFCLASS model
Hybrydowy neuronowo-rozmyty klasyfikator oparty na modelu NEFCLASS
Autorzy:
Gliwa, B.
Byrski, A.
Powiązania:
https://bibliotekanauki.pl/articles/305407.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
klasyfikatory neuronowo-rozmyte
NEFCLASS
sieci neuronowe
systemy rozmyte
neuro-fuzzy classifier
neural networks
fuzzy systems
Opis:
The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which was modified. The presented classifier was compared to popular classifiers - neural networks and k-nearest neighbours. Efficiency of modifications in classifier was compared with methods used in original model NEFCLASS (learning methods). Accuracy of classifier was tested using 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wis-consin. Moreover, influence of ensemble classification methods on classification accuracy was presented.
Artykuł przedstawia zasadę działania oraz wyniki badań eksperymentalnych klasyfikatora opartego na hybrydzie sieci neuronowej z logiką rozmytą, bazujący na modelu NEFCLASS. Prezentacja struktury i działania klasyfikatora została zilustrowana wynikami eksperymentów porównawczych przeprowadzonych dla popularnych klasyfikatorów, takich jak perceptron wielowarstwowy k najbliższych sąsiadów. Skuteczność wprowadzonych modyfikacji do klasyfikatora została porównana z metodami używanymi w oryginalnym modelu NEFCLASS (metody uczenia). Jako dane benchmarkowe posłużyły wybrane bazy danych z UCI Machine Learning Repository (iris, wine, breast cancer wisconsin). Zaprezentowano również wpływ użycia metod klasyfikacji zbiorczej na efektywność klasyfikacji.
Źródło:
Computer Science; 2011, 12; 115-135
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inteligentny system obustronnej głosowej komunikacjisystemu pomiarowego z operatorem dla technologii mobilnych
Intelligent two-way speech communication system between the measurement system and the operator for mobile technology
Autorzy:
Kacalak, W.
Majewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/156475.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
nowoczesne systemy pomiarowe
interakcja operatora z urządzeniem pomiarowym
komunikacja głosowa
interfejs mowy
sztuczna inteligencja
hybrydowe sieci neuronowe
technologie mobilne
modern measurement systems
interaction between the measurement system and the operator
voice communication
speech interface
artificial intelligence
hybrid neural networks
mobile technology
Opis:
W artykule przedstawiono nową koncepcję inteligentnych systemów obustronnej głosowej komunikacji urządzeń pomiarowych z operatorem w systemach pomiarowych. Opracowany dla technologii mobilnych, system komunikacji przy pomocy mowy i języka naturalnego pomiędzy urządzeniami pomiarowymi i ich operatorami, wyposażony jest w inteligentne mechanizmy służące do identyfikacji operatora, rozpoznawania słów składowych i całych komunikatów operatora, analizy składni i skutków poleceń, oceny bezpieczeństwa poleceń, nadzorowania procesu pomiarowego oraz oceny reakcji operatora.
In the paper a new concept of the intelligent two-way speech communication system between a measurement device and the operator for measuring systems is presented. Developed for mobile technologies, the communication system by speech and a natural language between measurement devices and their operators consists of intelligent mechanisms for operator identification, speech recognition, word and command recognition, command meaning and effect analysis, command safety assessment, measurement process supervision as well as operator reaction assessment. In the paper there are presented selected problems of the new concept of speech communication in measurement systems (Figs. 1, 2, 3) as well as advantages of recognition and evaluation of speech commands in a natural language with use of hybrid neural networks. Application of hybrid neural networks allows recognising commands of similar meanings but of different lexical and grammatical patterns, which will undoubtedly be the most important way of communication between humans and devices. The condition of the effectiveness of the presented system (Fig. 4) is to equip it with mechanisms of command meaning and effect analysis, as well as safety assessment. In the measurement systems (Fig. 5), the condition of safe communication between operators and measurement devices is the analysis of the measurement device and process state before giving the command and use of artificial intelligence for the effect analysis and safety assessment of the command. The development of a basis for building and applying remote mobile systems of control, supervision and optimisation of measurement processes which communicate an operator with a measurement system is an important goal. These systems enable a remote control of the measurement process quality by an operator being in any distance. It is very significant for development of new effective and flexible methods of measurements. The system for remote control, supervision and optimisation is an innovative solution making it possible to exploit better the measurement methods used nowadays. The presented solution can be included to the attempts of creating the standard of mobile applications for control, supervision and optimisation of measurement processes using two-way speech communication between the measurement device and the operator for measuring systems.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 4, 4; 221-224
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych
Methods of adaptation of knowledge systems based on fuzzy sets
Autorzy:
Małolepsza, Olga
Powiązania:
https://bibliotekanauki.pl/articles/41205866.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
zbiory rozmyte
metody adaptacji
funkcja przynależności
sztuczna inteligencja
systemy rozmyte
rozmyte sieci neuronowe
fuzzy sets
adaptation method
membership function
artificial intelligence
fuzzy systems
fuzzy neural networks
Opis:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych są bardzo ważnym tematem, ponieważ udoskonalają i optymalizują wydajność systemów rozmytych poprzez właściwą metodę adaptacji. Metoda adaptacji zależy od konkretnego zastosowania, wymagań systemowych, dostępnych danych i dziedziny problemu. W artykule przedstawiono zagadnienia związane ze zbiorami rozmytymi oraz podano przykłady. Ponadto zaprezentowano metody adaptacji systemów wiedzy opartej na zbiorach rozmytych takie jak algorytmy genetyczne, programowanie ewolucyjne, algorytmy uczące się, uczenie przez wzmacnianie oraz adaptację online
Adaptation methods for knowledge systems based on fuzzy sets are a very important topic because they improve and optimize the performance of fuzzy systems through a proper adaptation method. The adaptation method depends on the specific application, system requirements, available data and the problem domain. In this paper, the issues related to fuzzy sets are presented and examples are given. In addition, methods for adaptation of fuzzy set-based knowledge systems such as genetic algorithms, evolutionary programming, learning algorithms, reinforcement learning and online adaptation are presented.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2023, 15, 1; 11-20
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody sztucznej inteligencji w projektowaniu i eksploatacji systemów zaopatrzenia w wodę
Artificial Intelligence Methods in the Design and Operation of Water Supply Systems
Autorzy:
Czapczuk, A.
Dawidowicz, J.
Piekarski, J.
Powiązania:
https://bibliotekanauki.pl/articles/1818573.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
systemy zaopatrzenia w wodę
sztuczna inteligencja
systemy ekspertowe
sztuczne sieci neuronowe
metody heurystyczne
water supply systems
artificial intelligence
expert systems
artificial neural networks
heuristic methods
Opis:
Numerical methods are widely used for many years in the design and operation of water supply systems. Computer technology is characterized by very dynamic progress in the field of hardware and software. Specialized computer programs offer more and more features, especially in the field of data entry and viewing the results, but still operate on the basis of pre-defined algorithms. Currently we are dealing with a turbulent development of artificial intelligence techniques. Probably will never computational programs that completely will replace the operator of the need to make key decisions, but in recent years the aim is to develop computer programs that will be characterized by at least a small degree of creativity. For this purpose, the traditional calculation programs are supplemented by artificial intelligence methods, including artificial neural networks, expert systems, heuristic methods. The above trend can also be observed in issues related to water supply in the problems of design and operational. The literature proposals for the use of artificial intelligence at the stage of water treatment, disinfection, pumping, hydraulic design and simulation of water distribution systems and other components. Have taken a lot of optimization problems that are very difficult to solve by conventional methods. In this paper, some examples of the use of artificial intelligence methods in problems of water supply, indicating that these are the solutions that pave the way for the implementation in practice of design and operation. A wide range of artificial intelligence methods requires careful analysis that the method can be applied to individual problems. Also require a thorough knowledge of ongoing work in this regard.
Źródło:
Rocznik Ochrona Środowiska; 2015, Tom 17, cz. 2; 1527-1544
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies