Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "system adaptacyjno neuronowy" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Intelligent Retail Forecasting System for New Clothing Products Considering Stock-out
Inteligentny system przewidywania sprzedaży detalicznej nowych produktów odzieżowych uwzględniający wyprzedaż
Autorzy:
Huang, H.
Liu, Q.
Powiązania:
https://bibliotekanauki.pl/articles/232823.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
intelligent forecasting system
demand estimation
stock out
adaptive neuro fuzzy inference system
new clothing product
inteligentny system prognozowania
prognozowanie popytu
system adaptacyjno neuronowy
dane rozproszone
selekcja danych
Opis:
Improving the accuracy of forecasting is crucial but complex in the clothing industry, especially for new products, with the lack of historical data and a wide range of factors affecting demand. Previous studies more concentrate on sales forecasting rather than demand forecasting, and the variables affecting demand remained to be optimized. In this study, a two-stage intelligent retail forecasting system is designed for new clothing products. In the first stage, demand is estimated with original sales data considering stock-out. The adaptive neuro fuzzy inference system (ANFIS) is introduced into the second stage to forecast demand. Meanwhile a data selection process is presented due to the limited data of new products. The empirical data are from a Canadian fast-fashion company. The results reveal the relationship between demand and sales, demonstrate the necessity of integrating the demand estimation process into a forecasting system, and show that the ANFIS-based forecasting system outperforms the traditional ANN technique.
Poprawa dokładności prognozowania jest bardzo istotna, ale skomplikowana w przypadku przemysłu odzieżowego, zwłaszcza dla nowych produktów oraz szerokiego zakresu czynników wpływających na popyt. Wcześniejsze badania bardziej koncentrowały się na prognozowaniu sprzedaży, niż prognozowaniu popytu. Zmienne wpływające na popyt powinny zostać zoptymalizowane. W tym badaniu opracowano dwustopniowy inteligentny system prognozowania sprzedaży detalicznej przeznaczony dla nowych produktów odzieżowych. W pierwszym etapie, popyt jest określony za pośrednictwem oryginalnych danych dotyczących sprzedaży. Adaptacyjny neuronowy system danych rozproszonych (ANFIS) jest wprowadzony w drugim etapie do prognozowania popytu. Jednocześnie prezentowany jest proces selekcji danych. Dane empiryczne pochodzą z kanadyjskiej firmy.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 1 (121); 10-16
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies