- Tytuł:
- Symmetric Hamilton Cycle Decompositions of Complete Multigraphs
- Autorzy:
-
Chitra, V.
Muthusamy, A. - Powiązania:
- https://bibliotekanauki.pl/articles/29788703.pdf
- Data publikacji:
- 2013-09-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
complete multigraph
1-factor
symmetric Hamilton cycle
decomposition - Opis:
- Let $n ≥ 3$ and $⋋ ≥ 1$ be integers. Let $⋋K_n$ denote the complete multigraph with edge-multiplicity $⋋$. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of $⋋K_{2m}$ for all even $⋋ ≥ 2$ and $m ≥ 2$. Also we show that there exists a symmetric Hamilton cycle decomposition of $⋋K_{2m} − F$ for all odd $⋋ ≥ 3$ and $m ≥ 2$. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of $⋋K_n$ (respectively, $⋋K_n − F$, where $F$ is a 1-factor of $⋋K_n$) which exist if and only if $⋋(n − 1)$ is even (respectively, $⋋(n − 1)$ is odd), except the non-existence cases n ≡ 0 or 6 (mod 8) when ⋋ = 1
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 695-707
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki