Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "swarm optimization" wg kryterium: Temat


Tytuł:
Zastosowanie półautomatycznego algorytmu doboru optymalnej liczby i położenia odwiertów wydobywczych
Semi-Automatic Algorithm for Optimal Production Well Placement
Autorzy:
Łętkowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/1835267.pdf
Data publikacji:
2018
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optymalizacja
algorytm nietoperza
położenie odwiertów
NPV
eksploatacja
algorytmy rojowe
optimization
bat algorithm
location of wells
exploitation
swarm algorithms
Opis:
Artykuł poświęcono zastosowaniu tzw. algorytmu nietoperza do rozwiązania problemu określenia optymalnej liczby i położenia odwiertów wydobywczych. W procesie optymalizacji jako funkcję celu wykorzystano bieżącą wartość netto (ang. net present value – NPV). Testy zbudowanego algorytmu przeprowadzono na przykładzie modelu symulacyjnego złoża PUNQ-S3, dostępne- go na zasadach open source. Zastosowany algorytm został wyposażony w dodatkowe mechanizmy zwiększające jego efektywność: mechanizm próbkowania sześcianu łacińskiego (ang. Latin hypercube sampling – LHS) oraz mechanizm eliminowania położeń odwiertów poza modelem. Przeprowadzone testy wskazują na bardzo dobrą zbieżność zbudowanego algorytmu w procesie optymalizacji.
The article is devoted to the application of the so-called bat algorithm to solve the problem of determining the optimum number and location of production wells. This algorithm was proposed by Yang in 2010, and since then has been successfully used in solving both theoretical and practical optimization problems. The method belongs to a group of swarm optimization methods and in searching for the best solution, the algorithm uses a mechanism of echolocation, similar to the one used by a herd of bats. The current net present value (NPV) was used as a target function in the optimization process. The algorithm was tested on the example of the simulation model of the PUNQ-S3 reservoir available on an OpenSource basis. The applied algorithm was equipped with additional mechanisms increasing its effectiveness: Latin Hypercube Sampling (LHS) algorithm and the mechanism eliminating the locations of wells outside the operational area of the model. The first of the applied improvements ensures a better starting point for the proper optimization process, which significantly improves the convergence of the whole algorithm. The latter mechanism solves a problem specific to the issue in question.
Źródło:
Nafta-Gaz; 2018, 74, 8; 598-605
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmu optymalizacji rojem cząstek do znajdowania ekstremów globalnych wybranych funkcji testowych
A particle swarm optimization algorithm for finding global extrema of some benchmark functions
Autorzy:
Figielska, E.
Wiatrak, M.
Powiązania:
https://bibliotekanauki.pl/articles/91471.pdf
Data publikacji:
2015
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
optymalizacja rojem cząstek
ekstremum globalne
funkcje testowe
particle swarm optimization (PSO)
global extremum
benchmark functions
Opis:
Praca dotyczy zastosowania algorytmu optymalizacji rojem cząstek do znajdowania ekstremów globalnych dla wybranych funkcji jedno i wielomodalnych. Na podstawie wyników eksperymentu obliczeniowego wyłoniono warianty ustawień parametrów algorytmu zapewniające jego największą skuteczność.
In this paper, we present the particle swarm optimization algorithm for finding the global extrema of several single and multimodal functions. The values of the algorithm parameters which ensure its best performance are determined on the basis of the computational results.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2015, 9, 13; 7-19
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji
Application of swarm intelligence algorithms to optimization of control system models
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/269153.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
optymalizacja parametrów
algorytm mrówkowy
algorytm sztucznej kolonii pszczół
algorytm optymalizacji rojem cząstek
swarm intelligence
swarm based optimization
ant colony optimization
Artificial Bee Colony
particle swarm optimization (PSO)
Opis:
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 97-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane zagadnienia wielokryterialnego planowania sieci WLAN
Selected issues of multi-objective WLAN planning
Autorzy:
Pieprzycki, A.
Ludwin, W.
Powiązania:
https://bibliotekanauki.pl/articles/93106.pdf
Data publikacji:
2018
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Tarnowie
Tematy:
wielokryterialny algorytm optymalizacji
planowanie
WLAN
optymalizacja nieliniowa
cuckoo search
multi objective swarm optimization
multiobjective cuckoo search
WLAN planning
non–linear optimization
Opis:
Celem artykułu jest zastosowanie wielokryterialnego podejścia do planowania MOO (Multi Objective Optimisation) sieci łączności bezprzewodowej WLAN (Wireless Local Area Network) z wykorzystaniem wybranych rojowych metod optymalizacji. W tym celu, w procesie poszukiwania ekstremów dwóch funkcji kryterialnych, które są wskaźnikiem optymalizacyjnych, zastosowano dwa algorytmy rojowe: kukułki MOCS (Multi Objective Cuckoo Search) oraz optymalizacji rojem cząstek MOPSO (Multi Objective Particle Swarm Optimisation). Wyniki porównano z jednokryterialnym SOO (Single Objective Optimisation) zasięgowym planowaniem sieci bazującym na regularnym rozmieszczeniu punktów testujących TP (test point) z wykorzystaniem rojowego algorytmu kukułki CS (Cuckoo Search).
The aim of the article is to apply a multicriteria approach to MOO (Multi Objective Optimization) planning for WLAN (Wireless Local Area Network) using selected swarm optimization methods. For this purpose, in the process of searching for the extremum of two criterion functions, which are an optimization index, two swarm algorithms were used: MOCS (Multi Objective Cuckoo Search) and MOPSO (Multi Objective Particle Swarm Optimization). The results were compared with the single-criterion SOO (Single Objective Optimization) range-based network planning based on the regular distribution of TP (test point) using the CS Cuckoo Search algorithm.
Źródło:
Science, Technology and Innovation; 2018, 3, 2; 69-78
2544-9125
Pojawia się w:
Science, Technology and Innovation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wild Image Retrieval with HAAR Features and Hybrid DBSCAN Clustering For 3D Cultural Artefact Landmarks Reconstruction
Autorzy:
Pitchandi, Perumal
Powiązania:
https://bibliotekanauki.pl/articles/2201730.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
outliers removal
culturalartefact objects
3D reconstruction
particle swarm optimization
PSO
spatial clustering
density based spatial clustering
noise clustering algorithm
Opis:
In this digital age large amounts of information, images and videos can be found in the web repositories which accumulate this information. These repositories include personal, historic, cultural, and business event images. Image mining is a limited field in research where most techniques look at processing images instead of mining. Very limited tools are found for mining these images, specifically 3D (Three Dimensional) images. Open source image datasets are not structured making it difficult for query based retrievals. Techniques extracting visual features from these datasets result in low precision values as images lack proper descriptions or numerous samples exist for the same image or images are in 3D. This work proposes an extraction scheme for retrieving cultural artefact based on voxel descriptors. Image anomalies are eliminated with a new clustering technique and the 3D images are used for reconstructing cultural artefact objects. Corresponding cultural 3D images are grouped for a 3D reconstruction engine’s optimized performance. Spatial clustering techniques based on density like PVDBSCAN (Particle Varied Density Based Spatial Clustering of Applications with Noise) eliminate image outliers. Hence, PVDBSCAN is selected in this work for its capability to handle a variety of outliers. Clustering based on Information theory is also used in this work to identify cultural object’s image views which are then reconstructed using 3D motions. The proposed scheme is benchmarked with DBSCAN (Density-Based Spatial Clustering of Applications with Noise) to prove the proposed scheme’s efficiency. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards a reliable and just-in-time 3D reconstruction than existing state-of-the-art techniques.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 269--281
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vibroacoustic Real Time Fuel Classification in Diesel Engine
Autorzy:
Bąkowski, A.
Kekez, M.
Radziszewski, L.
Sapietova, A.
Powiązania:
https://bibliotekanauki.pl/articles/177686.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuel recognition
classification trees
particle swarm optimization (PSO)
random forest
Opis:
Five models and methodology are discussed in this paper for constructing classifiers capable of recognizing in real time the type of fuel injected into a diesel engine cylinder to accuracy acceptable in practical technical applications. Experimental research was carried out on the dynamic engine test facility. The signal of in-cylinder and in-injection line pressure in an internal combustion engine powered by mineral fuel, biodiesel or blends of these two fuel types was evaluated using the vibro-acoustic method. Computational intelligence methods such as classification trees, particle swarm optimization and random forest were applied.
Źródło:
Archives of Acoustics; 2018, 43, 3; 385-395
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using particle swarm optimization to accurately identify syntactic phrases in free text
Autorzy:
Tambouratzis, G.
Powiązania:
https://bibliotekanauki.pl/articles/91802.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
parsing of natural language
machine translation
syntactically-derived phrasing
particle swarm optimization (PSO)
PSO
parameter optimization
Adaptive PSO
AdPSO
Opis:
The present article reviews the application of Particle Swarm Optimization (PSO) algorithms to optimize a phrasing model, which splits any text into linguistically-motivated phrases. In terms of its functionality, this phrasing model is equivalent to a shallow parser. The phrasing model combines attractive and repulsive forces between neighbouring words in a sentence to determine which segmentation points are required. The extrapolation of phrases in the specific application is aimed towards the automatic translation of unconstrained text from a source language to a target language via a phrase-based system, and thus the phrasing needs to be accurate and consistent to the training data. Experimental results indicate that PSO is effective in optimising the weights of the proposed parser system, using two different variants, namely sPSO and AdPSO. These variants result in statistically significant improvements over earlier phrasing results. An analysis of the experimental results leads to a proposed modification in the PSO algorithm, to prevent the swarm from stagnation, by improving the handling of the velocity component of particles. This modification results in more effective training sequences where the search for new solutions is extended in comparison to the basic PSO algorithm. As a consequence, further improvements are achieved in the accuracy of the phrasing module.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 63-77
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unsupervised classification and particle swarm optimization
Klasyfikacja nienadzorowana i optymalizacja rojem cząstek
Autorzy:
Truszkowski, A.
Topczewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/341179.pdf
Data publikacji:
2012
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
klasyfikacja nienadzorowana
analiza skupień
optymalizacja rojem cząstek
unsupervised classification
clustering
particle swarm optimization (PSO)
Opis:
This article considers three algorithms of unsupervised classification -K-means, Gbest and the Hybrid method, the last two have been proposed in [14]. All three algorithms belong to the class of non-hierarchical methods. At first, the initial split of objects into known in advance number of classes is performed. If it is necessary, some objects are then moved into other clusters to achieve better split - between cluster variation should be much larger than within cluster variation. The first algorithm described in this paper (K-means) is wellknown classical method. The second one (Gbest) is based on the particle swarm intelligence idea. While the third is a hybrid of two mentioned algorithms. Several indices assessing the quality of obtained clusters are calculated.
W niniejszym artykule porównywane są trzy algorytmy analizy skupień - metoda k-średnich, algorytm gbest oraz metoda hybrydowa. Algorytmy gbest oraz hybrydowy zostały zaproponowane w publikacji [14]. Wszystkie trzy metody nalezą a do rodziny metod niehierarchicznych, w których na początku tworzony jest podział obiektów na znaną z góry liczbę klastrów. Następnie, niektóre obiekty przenoszone są pomiędzy klastrami, by uzyskać jak najlepszy podział - wariancja pomiędzy skupieniami powinna być znacznie większa niż wariancja wewnątrz skupień. Pierwszy algorytm (k-means) jest znaną, klasyczną metodą. Drugi oparty jest na idei inteligencji roju cząstek. Natomiast trzeci jest metodą hybrydową łączącą dwa wymienione wcześniej algorytmy. Do porównania uzyskanych skupień wykorzystano kilka różnych indeksów szacujących jakość otrzymanych skupień.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2012, 9; 119-132
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unequally Spaced Antenna Array Synthesis Using Accelerating Gaussian Mutated Cat Swarm Optimization
Autorzy:
Kumar, Prasanna K.
Pappula, Lakshman
Madhav, B. T. P.
Prabhakar, V. S. V.
Powiązania:
https://bibliotekanauki.pl/articles/2058505.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Gaussian mutation
cat swarm optimization
linear antenna array
PSLL
Opis:
Low peak sidelobe level (PSLL) and antenna arrays with high directivity are needed nowadays for reliable wireless communication systems. Controlling the PSLL is a major is sue in designing effective antenna array systems. In this paper, a nature inspired technique, namely accelerating Gaussian mutated cat swarm optimization (AGMCSO) that attributes global search abilities, is proposed to control PSLL in the radiation pattern. In AGM-SCO, Gaussian mutation with an acceleration parameter is used in the position-updated equa tion, which allows the algorithm to search in a systematic way to prevent premature convergence and to enhance the speed of convergence. Experiments concerning several benchmark multimodal problems have been conducted and the obtained results illustrate that AGMCSO shows excellent performance concerning evolutionary speed and accuracy. To validate the overall efficacy of the algorithm, a sensitivity analysis was per formed for different AGMCSO parameters. AGMCSO was researched on numerous linear, unequally spaced antenna ar rays and the results show that in terms of generating low PSLL with a narrow first null beamwidth (FNBW), AGMCSO out performs conventional algorithms.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 1; 99--109
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Traffic fatalities prediction based on support vector machine
Autorzy:
Li, T.
Yang, Y.
Wang, Y.
Chen, C.
Yao, J.
Powiązania:
https://bibliotekanauki.pl/articles/223743.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accident
support vector machine
SVM
particle swarm optimization (PSO)
PSO
prediction model
optimal parameters
wypadek drogowy
Particle Swarm Optimization
model prognostyczny
optymalne parametry
Opis:
To effectively predict traffic fatalities and promote the friendly development of transportation, a prediction model of traffic fatalities is established based on support vector machine (SVM). As the prediction accuracy of SVM largely depends on the selection of parameters, Particle Swarm Optimization (PSO) is introduced to find the optimal parameters. In this paper, small sample and nonlinear data are used to predict fatalities of traffic accident. Traffic accident statistics data of China from 1981 to 2012 are chosen as experimental data. The input variables for predicting accident are highway mileage, vehicle number and population size while the output variables are traffic fatality. To verify the validity of the proposed prediction method, the back-propagation neural network (BPNN) prediction model and SVM prediction model are also used to predict the traffic fatalities. The results show that compared with BPNN prediction model and SVM model, the prediction model of traffic fatalities based on PSO-SVM has higher prediction precision and smaller errors. The model can be more effective to forecast the traffic fatalities. And the method using particle swarm optimization algorithm for parameter optimization of SVM is feasible and effective. In addition, this method avoids overcomes the problem of “over learning” in neural network training progress.
Źródło:
Archives of Transport; 2016, 39, 3; 21-30
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tracking Exercise Motions of Older Adults Using Contours
Autorzy:
Havens, T C
Alexanderson, G L
Abbott, C C
Keller, J M
Skubic, M
Rantz, M
Powiązania:
https://bibliotekanauki.pl/articles/108766.pdf
Data publikacji:
2009
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
Computer vision
human factors
human motion capture
swarm optimization
contour extraction
Opis:
In this paper we describe the development of a novel markerless motion capture system and explore its use in documenting elder exercise routines in a health club. This system uses image contour tracking and swarm intelligence methods to track the location of the spine and shoulders during three exercises — treadmill, exercise bike, and overhead lateral pull-down. Validation results show that our method has a mean error of approximately 2 degrees when measuring the angle of the spine or shoulders relative to the horizontal. Qualitative study results demonstrate that our system is capable of providing important feedback about the posture and stability of elders while they are performing exercises. Study participants indicated that feedback from our system would add value to their exercise routines.
Źródło:
Journal of Applied Computer Science Methods; 2009, 1 No. 2; 21-42
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Toward the best combination of optimization with fuzzy systems to obtain the best solution for the GA and PSO algorithms using parallel processing
Autorzy:
Valdez, Fevrier
Kawano, Yunkio
Melin, Patricia
Powiązania:
https://bibliotekanauki.pl/articles/384329.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
genetic algorithms
particle swarm optimization (PSO)
fuzzy logic
parallel processing
Opis:
In general, this paper focuses on finding the best configuration for PSO and GA, using the different migration blocks, as well as the different sets of the fuzzy systems rules. To achieve this goal, two optimization algorithms were configured in parallel to be able to integrate a migration block that allow us to generate diversity within the subpopulations used in each algorithm, which are: the particle swarm optimization (PSO) and the genetic algorithm (GA). Dynamic parameter adjustment was also performed with a fuzzy system for the parameters within the PSO algorithm, which are the following: cognitive, social and inertial weight parameter. In the GA case, only the crossover parameter was modified.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 1; 55-64
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The multi-constrained multicast routing improved by hybrid bacteria foraging-particle swarm optimization
Autorzy:
Sahoo, Satya Prakash
Kabat, Manas Ranjan
Powiązania:
https://bibliotekanauki.pl/articles/305674.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
QoS routing
multicasting
bacteria foraging optimization
particle swarm optimization (PSO)
Opis:
To solve multicast routing under multiple constraints, it is required to generate a multicast tree that ranges from a source to the destinations with minimum cost subject to several constraints. In this paper, PSO has been embedded with BFO to improve the convergence speed and avoid premature convergence that will be used for solving QoS multicast routing problem. The algorithm proposed here generates a set of delay compelled links to every destination present in the multicast group. Then the Bacteria Foraging Algorithm (BFA) selects the paths to all the destinations sensibly from the set of least delay paths to construct a multicast tree. The robustness of the algorithm being proposed had been established through the simulation. The efficiency and effectiveness of the algorithm being proposed was validated through the comparison study with other existing meta-heuristic algorithms. It shows that our proposed algorithm IBF-PSO outperforms its competitive algorithms.
Źródło:
Computer Science; 2019, 20 (2); 245-269
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Learning System by the Least Squares Support Vector Machine Method and its Application in Medicine
Autorzy:
Szewczyk, P.
Baszun, M.
Powiązania:
https://bibliotekanauki.pl/articles/307897.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
classification
Grid-Search
particle swarm optimization (PSO)
patients diagnosis
support vector machine (SVM)
Opis:
In the paper it has been presented the possibility of using the least squares support vector machine to the initial diagnosis of patients. In order to find some optimal parameters making the work of the algorithm more detailed, the following techniques have been used: K-fold Cross Validation, Grid-Search, Particle Swarm Optimization. The result of the classification has been checked by some labels assigned by an expert. The created system has been tested on the artificially made data and the data taken from the real database. The results of the computer simulations have been presented in two forms: numerical and graphic. All the algorithms have been implemented in the C# language.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 3; 109-113
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of inertia weight on the Particle Swarm Optimization algorithm
Autorzy:
Cekus, D.
Skrobek, D.
Powiązania:
https://bibliotekanauki.pl/articles/122644.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
particle swarm optimization (PSO)
PSO algorithm
inertia weight
trajectory
optymalizacja rojem cząstek
PSO
algorytm PSO
metoda PSO
algorytm optymalizacji rojem cząstek
trajektoria
współczynnik wagowy
Opis:
The paper presents the use of the Particle Swarm Optimization (PSO) algorithm to find the shortest trajectory connecting two defined points while avoiding obstacles. The influence of the inertia weight and the number of population adopted in the first iteration of the PSO algorithm was examined for the length of the sought trajectory. Simulation results showed that the proposed method achieved significant improvement compared to the linearly decreasing method technique that is widely used in literature.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 4; 5-11
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies