Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "supervised methods" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Multi-label classification using error correcting output codes
Autorzy:
Kajdanowicz, T.
Kazienko, P.
Powiązania:
https://bibliotekanauki.pl/articles/331286.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
maszyna ucząca się
uczenie nadzorowane
metoda agregacji
struktura ramowa
machine learning
supervised learning
multilabel classification
error correcting output codes
ECOC
ensemble methods
binary relevance
framework
Opis:
A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the multi-label classification problem. The experimental results revealed that (i) the Bode-Chaudhuri-Hocquenghem (BCH) code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not suitable for datasets with larger label sets.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 829-840
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie autentyczności cyfrowych nagrań fonicznych utrwalonych w plikach MP3
Autenticity investigation of digital audio recorded as MP3 files
Autorzy:
Korycki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/1374046.pdf
Data publikacji:
2014
Wydawca:
Centralne Laboratorium Kryminalistyczne Policji
Tematy:
badanie autentyczności nagrań cyfrowych
wykrywanie montażu
badanie dowodów cyfrowych
podwójna i wielokrotna kompresja MP3
MDCT
metody uczenia maszynowego z nadzorem
maszyna wektorów nośnych (SVM)liniowa analiza dyskryminacyjna (LDA)
authenticity examination of the digital recordings
detection of montage
testing digital evidence
double and multiple MP3 compression
supervised machine learning methods
support vector machine (SVM)
linear discriminant analysis (LDA)
Opis:
W pracy nakreślono problem wykrywania nieciągłości w nagraniach dźwiękowych poddanych stratnej kompresji i zaprezentowano nowe metody, które mogą być wykorzystane do badania autentyczności cyfrowych zapisów fonicznych. Prezentowane rozwiązania bazują na statystycznych analizie danych obliczonych na podstawie wartości współczynników MDCT. Wyznaczone wektory składające się z 228 cech zostały użyte jako sekwencje treningowe dwóch algorytmów uczenia maszynowego z nadzorem: liniowej analizy dyskryminacyjnej (LDA) oraz maszyny wektorów nośnych (SVM). Detekcja wielokrotnej kompresji została wykorzystana zarówno do wykrywania modyfikacji zapisu, jak również do ujawniania śladów montażu w cyfrowych nagraniach fonicznych. Skuteczność algorytmów służących do wykrywania nieciągłości została przetestowana na specjalnie przygotowanej w tym celu bazie nagrań muzycznych składającej się z blisko miliona plików MP3. Wyniki badań zostały omówione w kontekście wpływu parametrów kompresji na możliwość detekcji ingerencji w zapis cyfrowych nagrań fonicznych.
In the work, the problem of detecting discontinuities in lossily compressed audio recordings was outlined and new methods that can be used to examine the authenticity of digital audio records were presented. The presented solutions are based on statistical analysis of the data, calculated on the basis of the value of MDCT coefficients. Designated vectors, consisting of 228 features, were used as the training sequences of two machine learning algorithms under the supervision of the linear discriminant analysis (LDA) and the support vector machine (SVM). Detection of multiple compression was both used to detect modification of the recording as well as to reveal traces of montage in digital audio recordings. The effectiveness of the algorithms for the detection of discontinuities was tested on the database of recorded music consisting of nearly one million MP3 files, specially prepared for this purpose. The results of the research were discussed in the context of the influence of parameters of the compression on the ability to detect interference in digital audio recordings.
Źródło:
Problemy Kryminalistyki; 2014, 283; 2-17
0552-2153
Pojawia się w:
Problemy Kryminalistyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of antimicrobial peptides by using eigenvectors
Autorzy:
Polanco, Carlos
Powiązania:
https://bibliotekanauki.pl/articles/1038767.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
antimicrobial peptides
supervised methods
structural bioinformatics
Opis:
Antibacterial peptides are subject to broad research due to their potential application and the benefit they can provide for a wide range of diseases. In this work, a mathematical-computational method, called the Polarity Vector Method, is introduced that has a high discriminative level (>70%) to identify peptides associated with Gram (-) bacteria, Gram (+) bacteria, cancer cells, fungi, insects, mammalian cells, parasites, and viruses, taken from the Antimicrobial Peptides Database. This supervised method uses only eigenvectors from the incident polar matrix of the group studied. It was verified with a comparative study with another extensively verified method developed previously by our team, the Polarity Index Method. The number of positive hits of both methods was up to 98% in all the tests conducted.
Źródło:
Acta Biochimica Polonica; 2016, 63, 3; 483-491
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies