Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "subdirectly irreducible" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Subdirectly irreducible non-idempotent left symmetric left distributive groupoids
Autorzy:
Jeřábek, Emil
Kepka, Tomáš
Stanovský, David
Powiązania:
https://bibliotekanauki.pl/articles/729183.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
groupoid
left distributive
left symmetric
subdirectly irreducible
Opis:
We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2005, 25, 2; 235-257
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The lattice of subvarieties of the biregularization of the variety of Boolean algebras
Autorzy:
Płonka, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/729041.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
subdirectly irreducible algebra
lattice of subvarieties
Boolean algebra
biregular identity
Opis:
Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by $V_{b}$ the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V).
Let B be the variety of Boolean algebras of type $τ_{b}: {+,·,´} → N$, where $τ_{b}(+) = τ_{b}(·) = 2$ and $τ_{b}(´) = 1$. In this paper we characterize the lattice $ℒ(B_{b})$ of all subvarieties of the biregularization of the variety B.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2001, 21, 2; 255-268
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Subdirect decompositions of algebras from 2-clone extensions of varieties
Autorzy:
Płonka, J.
Powiązania:
https://bibliotekanauki.pl/articles/966077.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
lattice
varieties
subdirectly irreducible algebra
Boolean algebra
clone extension of a variety
subdirect product
Opis:
Let τ:F → ℕ be a type of algebras, where F is a set of fundamental operation symbols and ℕ is the set of nonnegative integers. We assume that |F|≥2 and 0 ∉ (F). For a term φ of type τ we denote by F(φ) the set of fundamental operation symbols from F occurring in φ. An identity φ ≉ ψ of type τ is called clone compatible if φ and ψ are the same variable or F(φ)=F(ψ)≠$\emptyset$. For a variety V of type τ we denote by $V^{c,2}$ the variety of type τ defined by all identities φ ≉ ψ from Id(V) which are either clone compatible or |F(φ)|, |F(ψ)|≥2. Under some assumption on terms (condition (0.iii)) we show that an algebra ${\gt A}$ belongs to $V^{c,2}$ iff it is isomorphic to a subdirect product of an algebra from V and of some other algebras of very simple structure. This result is applied to finding subdirectly irreducible algebras in $V^{c,2}$ where V is the variety of distributive lattices or the variety of Boolean algebras.
Źródło:
Colloquium Mathematicum; 1998, 77, 2; 189-199
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On varieties of left distributive left idempotent groupoids
Autorzy:
Stanovský, David
Powiązania:
https://bibliotekanauki.pl/articles/729113.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
left distributivity
left idempotence
right zero band
LDLI groupoids
subdirectly irreducible
free groupoid
lattice of subvarieties
Opis:
We describe a part of the lattice of subvarieties of left distributive left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈ (xy)(xz) and (xx)y ≈ xy) modulo the lattice of subvarieties of left distributive idempotent groupoids. A free groupoid in a subvariety of LDLI groupoids satisfying an identity xⁿ ≈ x decomposes as the direct product of its largest idempotent factor and a cycle. Some properties of subdirectly ireducible LDLI groupoids are found.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2004, 24, 2; 267-275
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies