Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "strong domination number" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Domination parameters of a graph with added vertex
Autorzy:
Zwierzchowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/2050876.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
total domination number
strong domination number
subdivision
Opis:
Let $G = (V, E)$ be a graph. A subset $D \subseteq V$ is a total dominating set of $G$ if for every vertex $y \in V$ there is a vertex $x \in D$ with $xy \in E$. A subset $D \subseteq V$ is a strong dominating set of G if for every vertex $y \in V - D$ there is a vertex $x \in D$ with $xy \in E and deg_{G}(x) \geq deg_{G}(y)$. The total domination number $\gamma_{t}(G)$ (the strong domination number $\gamma_{S}(G)$) is defined as the minimum cardinality of a total dominating set (a strong dominating set) of $G$. The concept of total domination was first defined by Cockayne, Dawes and Hedetniemi in 1980 [1], while the strong domination was introduced by Sampathkumar and Pushpa Latha in 1996 [3]. By a subdivision of an edge $uv \in E$ we mean removing edge $uv$, adding a new vertex $x$, and adding edges $ux$ and $vx$. A graph obtained from $G$ by subdivision an edge $uv \in E$ is denoted by $G \oplus uxvx$. The behaviour of the total domination number and the strong domination number of a graph $G \oplus u_{x}v_{x}$ is developed.
Źródło:
Opuscula Mathematica; 2004, 24, 2; 231-234
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concepts Arising from Strong Efficient Domination Number. Part I
Autorzy:
Meena, N.
Gayathri, A.
Powiązania:
https://bibliotekanauki.pl/articles/1030980.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
domination
strong efficient bondage number
strong efficient domination
Opis:
Let G=(V,E) be a simple graph. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every v∈V(G),|N_s [v]∩S|=1.(|N_w [v]∩S|=1) , where N_s [v]={u∈V(G) ∶uv ∈E(G),deg〖u ≥degv 〗 }. (N_w [v]={u∈V(G) ∶uv ∈E(G), degv ≥degu The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient dominating set of G and is denoted by γ_se (G) (γ_we (G)). A graph G is strong efficient if there exists a strong efficient dominating set of G. The strong efficient bondage number b_se (G) of a non empty graph G is the minimum cardinality among all sets of edges X⊆E such that γ_se (G-X)>γ_se (G). In this paper, the strong efficient bondage number of some path related graphs and some special graphs are studied.
Źródło:
World Scientific News; 2020, 145; 342-353
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Efficient Co-Bondage Number of Some Graphs
Autorzy:
Meena, N.
Vignesh, M. Madhan
Powiązania:
https://bibliotekanauki.pl/articles/1030836.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
domination
strong efficient co-bondage number
strong efficient domination
Opis:
Let G = (V, E) be a simple graph. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every v ∈ V(G), |N_s [v]∩ S|=1. (|N_w [v]∩ S|=1), where N_s (v) = {u ∈V(G) : uv∈ E(G), deg u ≥ deg v}. (N_w (v) = {u ∈V(G) : uv∈ E(G), deg v ≥ deg u}). The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by γ_se(G) (γ_we(G)). A graph G is strong efficient if there exists a strong efficient dominating set of G. The strong efficient co-bondage number 〖bc〗_se(G) is the maximum cardinality of all sets of edges X ⊆ E such that γ_se (G+X) γ_se(G). In this paper, the strong efficient co-bondage number of some standard graphs and some special graphs are determined.
Źródło:
World Scientific News; 2020, 145; 234-244
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concepts Arising from Strong Efficient Domination Number. Part – III
Autorzy:
Vignesh, M. Madhan
Meena, N.
Powiązania:
https://bibliotekanauki.pl/articles/1031631.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
domination
strong efficient co-bondage number
strong efficient domination
Opis:
Let G = (V, E) be a simple graph. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every v ∈ V(G), |N_s[] ∩ S|=1. (|N_w [] ∩ S|=1), where N_s () = {u ∈V(G) : uv ∈ E(G), deg u ≥ deg v}. (N_w () = {u ∈V(G) : uv ∈ E(G), deg v ≥ deg u}). The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by γ_se(G) (γ_we(G)). A graph G is strong efficient if there exists a strong efficient dominating set of G. The strong efficient co-bondage number (G) is the maximum cardinality of all sets of edges X ⊆ E such that γ_se( + ) ≤ γ_se(G). In this paper, further results on strong efficient co-bondage number of some special graphs are determined.
Źródło:
World Scientific News; 2020, 146; 110-120
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concepts Arising from Strong Efficient Domination Number. Part II
Autorzy:
Meena, N.
Priyanka, G. Jeba
Powiązania:
https://bibliotekanauki.pl/articles/1031591.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Domination
strong efficient domination
strong efficient non bondage number
Opis:
Let G = (V,E) be a simple graph. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every v∈V(G),|N_s [v]∩S|=1.( |N_w [v]∩S|=1), where〖 N〗_s (v)={u∈V(G):uv∈E(G),degu≥degv}(N_w (v){u∈V(G),uv∈E(G),degv≥degu}. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and denoted by γ_se (G)(γ_we (G)). The strong efficient non bondage number b_sen (G) is the maximum cardinality of all sets of edge X⊆E such that γ_se (G-X) = γ_se (G). In this paper, the strong efficient non bondage number of some corona related graphs are studied.
Źródło:
World Scientific News; 2020, 146; 22-35
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies