Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stal ultrawytrzymała" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Perspektywy rozwoju technologii wytwarzania i zastosowań wyrobów z ultrawytrzymałych stali nanobainitycznych
Prospects for progress in the manufacturing technologies and applications of ultra-strength nanobainitic steel products
Autorzy:
Garbarz, B.
Powiązania:
https://bibliotekanauki.pl/articles/181923.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
stal nanostrukturalna
stal ultrawytrzymała
nanobainit
technologia wytwarzania
zastosowanie
nanostructured steel
ultra-strength steel
nanobainite
manufacturing technology
application
Opis:
Opisano i zilustrowano wynikami badań, morfologiczne cechy struktury i charakterystyki mechaniczne grupy gatunkowej stali nanobainitycznych, do której należą nanostrukturalne stale dwufazowe bainityczno-austenityczne i trójfazowe bainityczno-austenityczno-martenzytyczne. Przedstawiono wyniki badań wpływu procesów zachodzących w badanych stalach w trakcie wytwarzania, takich jak segregacja międzydendrytyczna pierwiastków stopowych powstająca w wyniku krzepnięcia, odwęglenie w wyniku wysokotemperaturowych obróbek cieplnych, skłonność do pękania w trakcie chłodzenia z zakresu trwałości austenitu - na strukturę i właściwości półwyrobów i wyrobów. Zaproponowano metody zmniejszenia niepożądanych skutków wymienionych procesów. Na podstawie dostępnych źródeł informacji przedstawiono aktualny stan komercjalizacji gatunków stali nanobainitycznych w świecie oraz działania Instytutu Metalurgii Żelaza mające na celu wdrożenie wyników zrealizowanych projektów dotyczących tej nowej klasy stali konstrukcyjnych, na tle konkurencji z obecnie stosowanymi gatunkami ultrawytrzymałymi, głównie ze stalami stopowymi ulepszanymi cieplnie.
Morphological features of microstructure and mechanical characteristics of nanobainitic steel grades, comprising dual phase bainite-austenite and triple phase bainite-austenite-martensite nanostructured steels, were described and exemplified by research outputs. Results of investigation of the influence of processes occurring in the investigated steels during manufacturing - such as interdendritic segregation of alloying elements arising as the effect of solidification, decarburisation caused by high temperature heat treatments, propensity to cracking due to cooling from the austenite temperature range - on microstructure and properties of the semi-products and products were presented. Methods for reducing the adverse infl uence of the mentioned processes were proposed. Based on available information the current status of commercialisation of nanobainitic steels in the world and activities of Instytut Metalurgii Żelaza aimed at application of the results of the accomplished projects concerning this new structural steels were presented, taking into account the competition with the ultra-strength steel grades currently used, mainly with the quenched and tempered grades.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 2, 2; 65-79
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technologie wytwarzania supertwardych materiałów nanostrukturalnych ze stopów żelaza oraz ich zastosowanie w pancerzach
Technology of production of superhard nanostructured Fe–based alloys and their application in armours
Autorzy:
Garbarz, B.
Burian, W.
Marcisz, J.
Żak, A.
Wiśniewski, A.
Żochowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/182246.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
stal ultrawytrzymała
stal nanostrukturalna
nanobainit
pancerz kompozytowy
pancerz warstwowy
ultra-strength steel
nanostructured steel
nanobainite
composite armour
layered armour
Opis:
Artykuł zawiera najważniejsze rezultaty projektu pt. „Technologie wytwarzania supertwardych materiałów nanostrukturalnych ze stopów żelaza oraz ich zastosowanie w pancerzach pasywnych i pasywno-reaktywnych” UDAPOIG.01.03.01-00-042/08-05, zrealizowanego w okresie w okresie 1.02.2009 – 31.08.2013 przez Instytut Metalurgii Żelaza (lider konsorcjum) oraz Wojskowy Instytut Techniczny Uzbrojenia (członek konsorcjum). Celem projektu było opracowanie gatunków stali o strukturze nanokrystalicznej przeznaczonych do zastosowania w konstrukcji pancerzy chroniących przed przebiciem pociskami przeciwpancernymi oraz opracowanie modeli pancerzy zawierających warstwy z opracowanych gatunków stali. Do badań wytypowano trzy rodzaje materiałów: superczyste wysokowytrzymałe stale maraging, wysokowęglowe stale bainityczne o strukturze nanokrystalicznej oraz dwufazowe nanokrystaliczno – amorficzne stopy żelaza. Zaprojektowano nowy gatunek stali ultrawytrzymałej (oznaczony NANOS-BA) o składzie chemicznym 0,6%C-1,8%Si-2,0%Mn + dodatki Cr, Co, Mo, V, zapewniającym wytworzenie nanostruktury składającej się z nanolistew bezwęglikowego bainitu i austenitu resztkowego. Opracowano wytyczne do przemysłowej technologii wytwarzania blach ze stali NANOS-BA o grubości z zakresu 4÷20 mm i ich obróbki cieplnej. Po fi nalnej obróbce cieplnej właściwości mechaniczne blach NANOS-BA są następujące: Rm >1,9 GPa, R 0,2 >1,3 GPa, A5 > 14%, HV10 > 600. Zaprojektowano zmodyfikowane gatunki ultrawytrzymałych stali maraging w klasach od MS350 do MS550 i parametry niestandardowej obróbki cieplnej zwiększającej ciągliwość oraz nową stal umacnianą wydzieleniowo o obniżonej w stosunku do stali typu maraging zawartości pierwiastków stopowych, oznaczoną NANOS-3D. Opracowano skład chemiczny stopu na bazie żelaza Fe-10%Mo-3%Cr-3,2%C-1,2%B charakteryzujący się zdolnością do morfizacji przy stosunkowo małej szybkości chłodzenia ze stanu ciekłego (rzędu 102 ºC/s). Zbudowano i uruchomiono stanowisko laboratoryjne do topienia i odlewania stopów na bazie Fe w formie elementów o grubości do 5 mm wykazujących strukturę nanokrystaliczno-amorficzną. Osiągnięcie poziomu pozwalającego na uzyskanie wyrobów amorficznych o wymaganym zespole właściwości do zastosowań przemysłowych wymaga dalszych badań. Opracowano modele numeryczne do symulacji oddziaływania pocisków z pancerzem z blachy stalowej na bazie programów LS-DYNA i AUTODYN. Na podstawie wyników badań ostrzałem stwierdzono, że zdolność ochronna płytek ze stali NANOS-BA i ze stali maraging o zoptymalizowanych właściwościach jest wyższa od zdolności ochronnej płyt stalowych o najwyższych parametrach dostępnych obecnie na rynku. Oceniając właściwości mechaniczne, poziom ochrony balistycznej, koszty wytwarzania i możliwość uruchomienia produkcji w kraju, do przemysłowego wytwarzania elementów pancerzy wytypowano stal nanobainityczną NANOS-BA. Zaprojektowano konstrukcję oraz opracowano dokumentację konstrukcyjną i wykonawczą modułu pasywnego pancerza warstwowego w wersji produkcyjnej, zawierającego warstwę z opracowanej w projekcie stali NANOS-BA.
The most important results of the project ”Technology of production of superhard nanostructured Fe–based alloys and their application in passive and passive-reactive armours” UDA-POIG.01.03.01-00-042/08-05, carried out in the period of 1.02.2009 – 31.08.2013 by Instytut Metalurgii Żelaza (lider of the consortium) and Wojskowy Instytut Techniczny Uzbrojenia (member of the consortium) are reported in the paper. The main goal of the project was to develop new nanostructured steel grades intended for application in armour constructions protecting against anti-tank ammunition as well as to develop armour models containing layers made of the developed steel grades. Three types of materials were chosen for investigation: ultra-clean high-strength maraging steels, high-carbon bainitic steels with nanocrystalline structure and dual-phase nanocrystalline – amorphous iron alloys. A new grade of medium alloy ultra-strength steel (named NANOS-BA) containing 0.6%C-1.8%Si-2.0%Mn + additions of Cr, Co, Mo, V allowing to form the nanostructure comprising nano-laths of carbideless bainite and retained austenite was developed. The guidelines and preliminary parameters of industrial technology for manufacturing of 4-20 mm thick plates from NANOS-BA steel were worked out. After the final heat treatment the plates characterised with the following properties: Rm >1.9 GPa, R 0.2 >1.3 GPa, A5 > 14%, HV10 > 600. Modified grades of ultra-strength maraging steels of classes from MS350 to MS550 were designed and parameters of non-standard heat treatment increasing the toughness were proposed and a new precipitation strengthened steel grade named NANOS-3D, containing lower amount of alloying elements in comparison with maraging steels was designed. A composition of iron – based alloy Fe-10%Mo-3%Cr-3.2% C-1.2%B characterised with amorphisation ability at relatively low cooling rate of about 102 ºC/s was developed. Experimental facilities for melting and casting of Fe – based alloys with nanograined – amorphous structure in the form of up to 5 mm thick components was designed and commissioned. Manufacturing of several millimetre thick metallic alloys with amorphous structure is a new method in the world and achieving the level allowing to get the products of required set of properties for industrial applications needs further research to be undertaken. Numerical models based on LS-DYNA and AUTODYN programmes to simulate the interaction between projectiles and the armour made of steel plate were developed. From analysis of the fi ring tests results it was found that the protection ability of specimens made of NANOS-BA steel and maraging steels with the optimised properties was higher than the protection ability of the steel plates with the highest currently available parameters. Based on assessment of mechanical properties, level of protection ability, manufacturing costs and possibility of starting domestic production, nanobainitic steel NANOS-BA was selected for industrial production of armour components. The construction design and technical specifications enabling industrialproduction of a module of the passive layered armour containing a NANOS-BA layer were worked out.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 3, 3; 2-33
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eksperymentalna weryfikacja możliwości zastosowania nanostrukturalnej stali bainityczno-austenitycznej do wytwarzania odkuwek matrycowych
Experimental verification of possible application of nanostructured bainite-austenite steel for manufacturing of drop forgings
Autorzy:
Garbarz, B.
Niżnik-Harańczyk, B.
Powiązania:
https://bibliotekanauki.pl/articles/181668.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
ultrawytrzymała stal nanobainityczna
odkształcalność na gorąco
udarność
ultra-strength nanoibainitic steel
hot deformability
fracture toughness
Opis:
Artykuł zawiera wyniki badań odkształcalności ultrawytrzymałej stali bainityczno-austenitycznej NANOS-BA® w zakresie temperatury charakterystycznym dla kucia na gorąco oraz wyniki pomiarów właściwości mechanicznych i obserwacji mikrostruktury tej stali po zastosowaniu różnych wariantów obróbki cieplnej. Wykonano symulacje kucia wybranego typu odkuwki matrycowej w urządzeniu Gleeble 3800, stosując odkształcanie w zakresie temperatury 800-1100°C i regulowane chłodzenie po odkształceniu. Stwierdzono, że maksymalne naprężenie na krzywych płynięcia σ-ε w kolejnych następujących po sobie gniotach w stałej temperaturze ulega niewielkim zmianom. Świadczy to o braku umacniania się badanej stali w zastosowanych izotermicznych cyklach odkształcania. Wraz z obniżaniem temperatury odkształcania próbek w symulatorze Gleeble od 1100°C, przez 950°, do 800°C, następował - zgodnie z oczekiwaniami - wzrost maksymalnego naprężenia odkształcenia. Testowano skuteczność zastosowania obróbki cieplnej GSIT (Grain Sectioning and Isothermal Transformation = podział ziarn i przemiana izotermiczna) do zwiększenia udarności stali NANOS-BA®. Zastosowanie obróbki GSIT, polegającej na kontrolowanym chwilowym przechłodzeniu poniżej MS przed obróbką izotermiczną, istotnie zwiększyło udarność Charpy-V stali NANOS-BA® w całym zakresie temperatury badania, od 20°C do -60°C. W wyniku wykonanych badań stwierdzono, że stal NANOS-BA® może zostać zastosowana do wytwarzania ultrawytrzymałych odkuwek matrycowych.
Results of deformability investigation of ultra-strength bainite-austenite steel NANOS-BA® in the temperature range characteristic of hot forging, as well as results of measurements of mechanical properties and microstructure observation of this steel subjected to various heat treatment procedures are reported in the paper. Simulations of forging operation of a specific type of drop forging in a Gleeble simulator were carried out applying deformations in the temperature range of 800-1100°C followed by controlled cooling. It was found that the maximum values of the stress read out from the σ-ε flow curves of consecutive compressions at constant deformation temperature only little changed. This is the evidence of lack of the work-hardening of the investigated steel in the consecutive isothermal compressions at applied deformation temperatures of 1100°C, 950° and 800°C. Lowering temperature of deformation in the Gleeble simulator from 1100°C, through 950°, to 800°C, caused - as expected – an increase in the maximum deformation stress. Effectiveness of the GSIT (Grain Sectioning and Isothermal Transformation) heat treatment to increase fracture toughness of NANOS-BA® steel was tested. Application of GSIT heat treatment, consisting in short-time undercooling below MS before isothermal transformation, substantially increased Charpy-V fracture toughness of NANOS-BA® steel in the whole range of testing temperature, from 20°C to -60°C. Based on the obtained results of investigation it was concluded that NANOS-BA® steel can be used for manufacturing of ultra-strength drop forgings.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2015, T. 67, nr 1, 1; 5-13
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methods to Increase the Protective Effectiveness of Add-on Armour made of Perforated Ultra-High-Strength Nanobainitic Steel Plates
Metody zwiększenia skuteczności ochronnej dodatkowego pancerza z perforowanych blach z ultra-wytrzymałej stali nanobainitycznej
Autorzy:
Garbarz, Bogdan
Marcisz, Jarosław
Burian, Wojciech
Kowalski, Aleksander
Borowski, Jacek
Szkudelski, Szymon
Walicki, Marek
Zając, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2203983.pdf
Data publikacji:
2023
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
add-on armour
perforated plates
ultra-high-strength nanobainitic steel
dodatkowe opancerzenie
stalowe płyty perforowane
ultrawytrzymała stal nanobainityczna
Opis:
The mechanical properties of industrially produced perforated steel plates are obtained by hardening and low-temperature tempering to produce a martensitic microstructure. Another morphological type of steel microstructure that allows for ultra-high strength and, at the same time, a level of ductility that qualifies it for use in armour is nanobainite. Research into nanobainitic steels has led to the development of plates manufacturing technology at a level that can be implemented in industrial production, and has confirmed the high potential of this material for use as additional armour in the form of perforated plates. This paper reports the results of research aimed at developing a technology for the production of perforated armour plates made of nanobainitic steel, with properties competitive with currently available perforated steel plates on the world market with the highest protective effectiveness under conditions of multi-hit firing tests with small and medium calibre ammunition. The tests were performed on 300 × 260 mm plates, with the nominal thicknesses of 8 mm, 6 mm and 4 mm, produced from industrially melted nanobainitic steel NANOS-BA®. The protective effectiveness of nanobainitic perforated plates in a system with a solid armour steel backing plate of 500 HBW hardness was tested by multi-hit firing, according to the procedures set out in the STANAG 4569 and AEP-55 vol. 1 specifications (adapted to the format of tested plates), against selected projectile types assigned to protection levels 2 and 3. Based on the analysis of the results of the firing tests and the macroscopic and microscopic examinations of the perforated plates before and after firing, the optimum perforation method was selected and the most favourable geometrical and dimensional arrangements of the perforations were determined for different plate thicknesses.
Celem badań było opracowanie technologii wytwarzania płyt perforowanych ze stali nanobainitycznej o skuteczności ochronnej konkurencyjnej w stosunku do obecnie dostępnych pancernych płyt perforowanych. Płyty perforowane o wymiarach 300 × 260 mm × (4 mm, 6 mm oraz 8 mm) wytworzono ze średniostopowej stali nanobainitycznej zawierającej 0,6% masowych węgla. Wykonano badania metalograficzne za pomocą mikroskopu świetlnego i skaningowego mikroskopu elektronowego oraz pomiary mikrotwardości i twardości. Testy ostrzałem wykonano wg STANAG 4569:ed3:2014 zgodnie z procedurą dostosowaną do wymiarów badanych płyt perforowanych. Wykonanie otworów w płytach metodą obróbki skrawaniem nie zmieniło właściwości mechanicznych w warstwach materiału przylegających do otworów. Wycinanie otworów laserem spowodowało spadek ciągliwości i w rezultacie zarodkowanie pęknięć w trakcie uderzenia pocisku. Wszystkie warianty układów płyt perforowanych o grubości 6 mm z płytami litymi o grubości 6 mm 500 HBW badane ostrzałem amunicją 7,62 × 39 mm-API-BZ spełniły wymagania poziomu 2 STANAG 4569. Układy płyt perforowanych o grubości 4 mm z płytą litą o grubości 4 mm 500 HBW nie spełniły wymagań poziomu 2. W wyniku ostrzału amunicją 7,62 × 54R mm-B32-API układów płyt perforowanych o grubości 8 mm z równoległymi płytami litymi 500 HBW o grubości 6 mm w zakresie poziomu 3 STANAG 4569, uzyskano pozytywne rezultaty dla określonych wariantów. Zaproponowano zmodyfikowane wzory perforacji dla płyt nanobainitycznych do finalnej weryfikacji eksperymentalnej.
Źródło:
Problemy Mechatroniki : uzbrojenie, lotnictwo, inżynieria bezpieczeństwa; 2023, 14, 1 (51); 23--60
2081-5891
Pojawia się w:
Problemy Mechatroniki : uzbrojenie, lotnictwo, inżynieria bezpieczeństwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Opracowanie podstaw przemysłowej technologii wytwarzania blach z supertwardej wysokowęglowej stali bainitycznej z zastosowaniem metody półprzemysłowej symulacji
Development of industrial technology of plate production from ultra-hard high-carbon bainitic steel with the use of semi-industrial simulation method
Autorzy:
Garbarz, B.
Woźniak, D.
Burian, W.
Niżnik, B.
Palus, R.
Powiązania:
https://bibliotekanauki.pl/articles/182455.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Metalurgii Żelaza im. Stanisława Staszica
Tematy:
symulacja półprzemysłowa
ultrawytrzymała stal nanokompozytowa
blachy stalowe
semi-industrial simulation
ultra-high-strength nano-composite steel
steel plates
Opis:
Metodą symulacji fizycznej w skali półprzemysłowej opracowano przemysłową technologię wytwarzania ultrawytrzymałych blach arkuszowych z nowoopracowanej nanokompozytowej stali o strukturze bainitycznej z udziałem austenitu resztkowego, nazwanej NANOS-BA. Skład chemiczny stali NANOS-BA (0,55-0,59%C, dodatki stopowe Mn, Si, Cr i Mo oraz mikrododatki V, Al i Ti) umożliwia wytworzenie z zastosowaniem obróbki cieplnoplastycznej i obróbki cieplnej wyrobów charakteryzujących się wysoką twardością i wytrzymałością oraz dobrą plastycznością. Eksperymenty w skali półprzemysłowej wykonano w Instytucie Metalurgii Żelaza z zastosowaniem modułu B linii LPS składającego się z elektrycznego pieca grzewczego, zbijacza zgorzeliny, nawrotnej walcarki duo/kwarto, urządzenia do przyspieszonego chłodzenia pasma i pieca elektrycznego do obróbki cieplnej bezpośrednio po walcowaniu. Materiałem wsadowym były półprzemysłowe wlewki z badanej stali NANOS-BA o masie 70-95 kg wytopione i odlane w indukcyjnym piecu próżniowym VSG100S, stanowiącym moduł A1 linii LPS. Do opracowania programu przepustów, przebiegów chłodzenia i parametrów obróbki cieplnej wykorzystano wyniki badań laboratoryjnych. Technologię przemysłowego wytwarzania ultrawytrzymałych blach arkuszowych ze stali NANOS-BA opracowano w dwóch odmianach: jako proces zintegrowany obejmujący następujące bezpośrednio po sobie wszystkie operacje technologiczne i jako proces etapowy składający się z etapu regulowanego walcowania i z odrębnego etapu fi nalnej obróbki cieplnej. W wyniku półprzemysłowej symulacji wytworzono blachy ze stali NANOS-BA o grubości w przedziale 4-15 mm, które poddano badaniom strukturalnym i wytrzymałościowym. Ustalono, że struktura blach składa się z nanolistew bezwęglikowego bainitu i austenitu resztkowego w ilości 20-25% obj. Blachy charakteryzują się wysoką twardością z zakresu 600-650HV, granicą plastyczności powyżej 1,3 GPa i dobrą plastycznością, na poziomie 12-20% wydłużenia całkowitego w próbie rozciągania. Wykazano, że półprzemysłowa symulacja jest efektywną metodą opracowywania technologii gotowych do zastosowania przemysłowego.
Technology for production of plates from a novel ultra-high-strength nano-composite bainite-austenite steel (named NANOS-BA) using semi-industrial simulation method was developed. NANOS-BA steel contains 0.55-0.59%C, the additions of Mn, Si, Cr, and Mo and microadditions of V, Al, and Ti, which enables manufacturing steel products with very high hardness and strength as well as good plasticity using thermomechanical processing and heat treatment. Simulation experiments of thermomechanical processing and heat treatment were carried out at the Institute for Ferrous Metallurgy in the semi-industrial line (LPS) comprising: electric reheating furnace, descaler, one-stand reversing hot rolling mill, isothermal panels, equipment for accelerated air and/or water cooling at roller tables and electric furnace for heat treatment. As the charge material for simulation experiments, the semi-industrial 70-95 kg ingots melted and cast in VSG100S induction vacuum furnace (which represents A1 module of the LPS) were used. For elaboration of the rolling schedules, cooling patterns and heat treatment parameters the results of laboratory experiments and numerical modelling were used. Two versions of the technology for production of NANOS-BA steel plates have been developed: as an integrated process comprising all the consecutive technological operations in one line and as a process consisting of thermomechanical rolling and - as a separate stage - heat treatment operations. As a result of the semi-industrial simulation, NANOS-BA steel plates with thickness ranging from 4 to 15 mm were obtained and subject to mechanical testing and structural examination. It has been revealed that structure of the plates consisted of carbideless bainite nanolaths and retained austenite in the quantity of 20-25 vol.% and that their mechanical properties were high and plasticity was good: hardness in the range of 600-650HV, yield stress over 1.3GPa and total elongation in tensile test - 12-20%. The semi-industrial simulation proved to be a very effective method for development of technologies ready for industrial application.
Źródło:
Prace Instytutu Metalurgii Żelaza; 2012, T. 64, nr 1, 1; 129-137
0137-9941
Pojawia się w:
Prace Instytutu Metalurgii Żelaza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies