Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "spike timing dependent plasticity" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Creation through Polychronization
Autorzy:
Matthias, John
Powiązania:
https://bibliotekanauki.pl/articles/632533.pdf
Data publikacji:
2017
Wydawca:
Projekt Avant
Tematy:
collaboration
composition
polychronization
spike timing dependent plasticity
Opis:
I have recently suggested that some of the processes involved in the collaborative composition of new music could be analogous to several ideas introduced by Izhikevich in his theory of cortical spiking neurons and simple memory, a process which he calls Polychronization. In the Izhikevich model, the evocation of simple memories is achieved by the sequential re-firing of the same Polychronous group of neurons which was initially created in the cerebral cortex by the sensual stimulus. Each firing event within the group is contingent upon the previous firing event and, in particular, contingent upon the timing of the firings, due to a phenomenon known as “Spike Timing Dependent Plasticity.” I argue in this article that the collaborative creation of new music involves contingencies which form a Polychronous group across space and time which helps to create a temporary shared memorial space between the collaborators.
Źródło:
Avant; 2017, 8
2082-6710
Pojawia się w:
Avant
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity
Autorzy:
Nobukawa, Sou
Nishimura, Haruhiko
Yamanishi, Teruya
Powiązania:
https://bibliotekanauki.pl/articles/91886.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
spiking neural network
spike timing-dependent plasticity
dopamine-modulated spike timing-dependent plasticity
pattern classification
Opis:
Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopaminemodulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 4; 283-291
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies