Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "similarity-based approach" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Machine learning and essentialism
Uczenie maszynowe i esencjalizm
Autorzy:
Šekrst, Kristina
Skansi, Sandro
Powiązania:
https://bibliotekanauki.pl/articles/28763370.pdf
Data publikacji:
2022
Wydawca:
Copernicus Center Press
Tematy:
essentialism
machine learning
accidental properties
similarity-based approach
pattern recognition
modal necessity
Opis:
Machine learning and essentialism have been connected in the past by various researchers, in order to state that the main paradigm in machine learning processes is equivalent to choosing the “essential” attributes for the machine to search for. Our goal in this paper is to show that there are connections between machine learning and essentialism, but only for some kinds of machine learning, and often not including deep learning methods. Similarity-based approaches, more connected to the overall prototype theory, spanning from psychology and linguistics, seem more suited for pattern recognition and complex deep-learning issues, while for classification problems, mostly for unsupervised learning, essentialism seems like the best choice. In order to illustrate the difference better, we will connect both paths to their sources in other disciplines and see how human psychology influences our decision in machine-learning modeling as well. This leads to a philosophically very interesting consequence: even in the setting of supervised machine learning, essences are not present in data, but in targets, which in turn means that the categories which purport to be essences are in fact human-made, and hand-coded in the targets. The success of machine learning, therefore, does not give any substantial evidence for the independent existence of essential properties. Our stance here is to state that neither the existence nor the lack of “essential” properties in machine learning can lead to metaphysical, i.e., ontological claims.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2022, 73; 171-196
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies