Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci neuronowe jednokierunkowe" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Estymacja błędów modelu powierzchni opisanych funkcjami kształtu za pomocą sieci neuronowych
The estimation of errors of area models described by the shape functions by the means of neural networks
Autorzy:
Mrówczyńska, M.
Powiązania:
https://bibliotekanauki.pl/articles/341297.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
sieci neuronowe jednokierunkowe
algorytmy gradientowe
aproksymacja powierzchni
neural network
gradient methods of optimalization
approximation method
Opis:
W artykule przedstawiono zagadnienie estymacji błędów modeli powierzchni określonej na dyskretnym zbiorze punktów o danych wartościach współrzędnych przestrzennych (x,y,z). Przyjęto, że obiekt opisują funkcje kształtu w postaci płaszczyzny, paraboloidy eliptycznej oraz paraboloidy hiperbolicznej. Realizacja numeryczna zadania polegała na wyznaczeniu błędów modeli określonych za pomocą sieci neuronowych oraz na podstawie rozwiązania zadań wyrównawczych. Modelowanie za pomocą sieci neuronowych zrealizowano za pomocą sieci jednokierunkowych wielowarstwowych z zastosowaniem gradientowych metod optymalizacji oraz algorytmu Resilientback Propagation (RPROP). Wyniki porównano z wynikami aproksymacji wielomianem drugiego i trzeciego stopnia, funkcją sklejaną oraz metodą kriging.
The article deals with the issue of estimation of the area models errors determined on the basis of a discrete points set with the given values of space coordinates (x, y, z). The object was assumed to be described by shape functions in the form of the elliptic paraboloid and the hyperbolic paraboloid. The digital task accomplishment consisted in the statistic verification of errors of the models determined by neural networks and by the accomplishment of adjustment tasks. Modeling by the means of neural networks was carried out by the unidirectional multilayer networks with the application of gradient methods of optimalization and by Resilientback Propagation algorithm (RPROP). The obtained results were compared with the following results of approximation of the second and the third degree of polynomial, the b-spline function and the kriging's method.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2007, 6, 1; 15-23
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forward and inverse kinematics solution of a robotic manipulator using a multilayer feedforward neural network
Autorzy:
Sharkawy, Abdel-Nasser
Powiązania:
https://bibliotekanauki.pl/articles/2201647.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
multilayer neural network
feedforward neural network
forward kinematics
inverse kinematics
2-DOF planar robot
Levenberg-Marquardt algorithm
generated data
sieci neuronowe
sieci neuronowe jednokierunkowe
sieci neuronowe wielowarstwowe
kinematyka prosta
kinematyka odwrotna
algorytm Levenberga-Marquardta
generowanie danych
Opis:
In this paper, a multilayer feedforward neural network (MLFFNN) is proposed for solving the problem of the forward and inverse kinematics of a robotic manipulator. For the forward kinematics solution, two cases are presented. The first case is that one MLFFNN is designed and trained to find solely the position of the robot end-effector. In the second case, another MLFFNN is designed and trained to find both the position and the orientation of the robot end-effector. Both MLFFNNs are designed considering the joints’ positions as the inputs. For the inverse kinematics solution, a MLFFNN is designed and trained to find the joints’ positions considering the position and the orientation of the robot end-effector as the inputs. For training any of the proposed MLFFNNs, data is generated in MATLAB using two different cases. The first case is that data is generated assuming an incremental motion of the robot’s joints, whereas the second case is that data is obtained with a real robot considering a sinusoidal joint motion. The MLFFNN training is executed using the Levenberg-Marquardt algorithm. This method is designed to be used and generalized to any DOF manipulator, particularly more complex robots such as 6-DOF and 7-DOF robots. However, for simplicity, this is applied in this paper using a 2-DOF planar robot. The results show that the approximation error between the desired output and the estimated one by the MLFFNN is very low and it is approximately equal to zero. In other words, the MLFFNN is efficient enough to solve the problem of the forward and inverse kinematics, regardless of the joint motion type.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 2; 1--17
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies