Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci Bayesowskie" wg kryterium: Temat


Tytuł:
Bayesian reliability models of Weibull systems: State of the art
Autorzy:
Zaidi, A.
Ould Bouamama, B.
Tagina, M.
Powiązania:
https://bibliotekanauki.pl/articles/330104.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
modelowanie hierarchiczne
system Weibulla
sieci bayesowskie
diagnostyka uszkodzeń
hierarchical modeling
reliability
Weibull
Bayesian networks
fault diagnosis
Opis:
In the reliability modeling field, we sometimes encounter systems with uncertain structures, and the use of fault trees and reliability diagrams is not possible. To overcome this problem, Bayesian approaches offer a considerable efficiency in this context. This paper introduces recent contributions in the field of reliability modeling with the Bayesian network approach. Bayesian reliability models are applied to systems with Weibull distribution of failure. To achieve the formulation of the reliability model, Bayesian estimation of Weibull parameters and the model's goodness-of-fit are evoked. The advantages of this modelling approach are presented in the case of systems with an unknown reliability structure, those with a common cause of failures and redundant ones. Finally, we raise the issue of the use of BNs in the fault diagnosis area.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 585-600
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Eksploracyjna analiza i modelowanie procesu ekstruzji błyskawicznych makaronów pełnoziarnistych
Exploratory analysis and modeling of extrusion-cooking process of precooked whole wheat pasta products
Autorzy:
Wójtowicz, A.
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/290522.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
makaron pełnoziarnisty
ekstruzja
modelowanie
sieci bayesowskie
whole wheat pasta
extrusion-cooking
modeling
Bayesian networks
Opis:
W pracy przedstawiono możliwości zastosowania sieci bayerowskich do analizy eksploracyjnej i modelowania procesu ekstruzji makaronów błyskawicznych. Wykrywanie i modelowanie zależności pomiędzy parametrami procesu i produktu przeprowadzono za pomocą trzech algorytmów uczenia maszynowego na danych empirycznych uzyskanych podczas procesu wytwarzania makaronów błyskawicznych: MST, Taboo oraz SopLEQ. Otrzymana topologia sieci była zgodna z przewidywaną strukturą zależności wewnątrzprocesowych pomiędzy parametrami procesu a cechami produktu, a oszacowane warunkowe rozkłady prawdopodobieństwa umożliwiły poprawne wnioskowanie predykcyjne i diagnostyczne.
The paper presents application of Bayesian Network to exploratory analysis and modeling of extrusion-cooking process of precooked wholewheat pasta products. For knowledge discovery in extrusion process data and modeling interdependencies of process and product parameters there were used machine learning methods available in BayesiaLab BN modeling system: MST, Taboo and SopLEQ. Resulted BN topology and conditional probability distributions assured satisfied accuracy of both predictive and diagnostic reasoning.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 7, 7; 237-244
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Achieving career satisfaction through fostering innovation: lessons from the engineering profession in the Australian public sector
Autorzy:
Wipulanusat, Warit
Panuwatwanich, Kriengsak
Stewart, Rodney A.
Sunkpho, Jirapon
Thamsatitdej, Poomporn
Powiązania:
https://bibliotekanauki.pl/articles/2086470.pdf
Data publikacji:
2021
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
structural equation modelling
Bayesian networks
career satisfaction
engineer
Australia
modelowanie równań strukturalnych
sieci bayesowskie
satysfakcja zawodowa
inżynier
Opis:
This paper proposes a novel approach that integrates the capability of empirical validation of structural equation modelling (SEM) and the prediction ability of Bayesian networks (BN). The Hybrid SEM–BN approach was used as a decision support framework to examine the interplay between salient organisational constructs and their ability to influence engineers’ career satisfaction in the Australian Public Service (APS). The results emphasise that the ambidextrous culture for innovation was the most important factor that needed to be implemented in their organisation. Managerial implications are recommended for senior managers on how they can implement innovation culture to increase workplace innovation, which could, in turn, help reduce the turnover rate of engineers employed in the APS.
Źródło:
Engineering Management in Production and Services; 2021, 13, 4; 7--21
2543-6597
2543-912X
Pojawia się w:
Engineering Management in Production and Services
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ochrona przemysłowych systemów sterowania przez analizę ruchu sieciowego
Protection of industrial control systems through analysis of network traffic
Autorzy:
Tylman, W.
Powiązania:
https://bibliotekanauki.pl/articles/326425.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
industrial control systems
industrial networks
anomaly detection
Bayesian networks
MEBN networks
przemysłowe systemy sterowania
sieci przemysłowe
wykrywanie anomalii
sieci bayesowskie
sieci MEBN
Opis:
Przedstawiona jest koncepcja wysoce zautomatyzowanego rozwiązania pozwalającego na wykrywanie w przemysłowym ruchu sieciowym sytuacji odbiegających od stanu normalnego (anomalii). Omówione są zastosowania klasycznych sieci bayesowskich i sieci Multi-Entity Bayesian Networks (MEBN) wraz z dyskusją ich stosowalności w praktyce. Prace ilustrują również możliwość wykorzystania istniejącego oprogramowania (na przykładzie systemu Snort) oraz kwestie wymaganych modyfikacji związanych z pracą w sieciach nie-IP.
The paper presents a concept of a highly automated solution allowing detection, in industrial network traffic, of situations differing from the normal state (anomalies). It describes the use of classical Bayesian networks and Multi-Entity Bayesian Networks (MEBN), together with a discussion of their applicability in practice. The work also illustrates the possibility of using existing software (taking Snort system as an example) and the required modifications related to the support for non-IP networks.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2014, 74; 101-111
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Learning the naive Bayes classifier with optimization models
Autorzy:
Taheri, S.
Mammadov, M.
Powiązania:
https://bibliotekanauki.pl/articles/908351.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Bayesian networks
naive Bayes classifier
optimization
discretization
sieci bayesowskie
naiwny klasyfikator Bayesa
optymalizacja
dyskretyzacja
Opis:
Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are considered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary classification data sets, where continuous features are discretized by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the proposed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its simple structure.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 787-795
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistic graphical model supporting early diagnosis of autism spectrum disorder
Probabilistyczny model wspierający wczesne diagnozowanie autyzmu
Autorzy:
Szczygieł, J.
Oniśko, A.
Świderska, J.
Krysiewicz, E.
Sienkiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/88424.pdf
Data publikacji:
2014
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sieci bayesowskie
diagnozowanie medyczne
autyzm
Opis:
Bayesian networks are recognized as a suitable tool for modelling diagnostic problems. The power of this modelling is that it can combine knowledge coming from different sources. For example, in case of medical domain, the expert knowledge can be merged along with the medical data. This paper presents a Bayesian network model for early diagnosis of autism. The model was built based on the medical literature and then was revised by two domain experts. Our tool is dedicated to parents that can perform an early diagnosis of their child before visiting a specialist.
Sieci bayesowskie są często używanym narzędziem w rozwiązywaniu problemów diagnostycznych. Jedną z zalet tego narzędzia jest mozliwość łączenia wiedzy pochodzącej z różnych źródeł. Na przykład, wiedza ekspertów może być połączona z danymi. W naszym artykule prezentujemy model sieci bayesowskiej wspomagający wczesne diagnozowanie autyzmu. Model został zbudowany w oparciu o literaturę medyczną, a następnie zweryfikowany przez ekspertów. Narzędzie, które stworzyliśmy jest dedykowane rodzicom, którzy mogą dokonać wstępnej diagnozy zanim skontaktują się ze specjalistą.
Źródło:
Advances in Computer Science Research; 2014, 11; 151-164
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Concept of Usage of Bayesian Networks in Clinical Decision Support Module
Koncepcja wykorzystania sieci bayesowskich w module wspomagania decyzji medycznych
Autorzy:
Strawa, M.
Powiązania:
https://bibliotekanauki.pl/articles/305953.pdf
Data publikacji:
2012
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci bayesowskie
sieci przekonań
system wspomagania decyzji medycznych
Bayesian networks
belief networks
clinical decision support system
Opis:
Concept of decision support module utilizing a repository of clinical pathways has been presented in this paper: the definition of Bayesian networks and its major concepts, description of chosen inference algorithm and an example of diagnosis.
W artykule przedstawiono koncepcję budowy modułu wspomagania decyzji medycznych, współpracującego z repozytorium ścieżek klinicznych. Składają się na nią: definicja sieci bayesowskich oraz najważniejszych pojęć z nimi związanych, opis wybranego mechanizmu wnioskowania oraz przykład generowania diagnozy w module.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2012, 9; 27-34
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie niezawodności farmy wiatrowej z wykorzystaniem sieci bayesowskich i procesów semi-Markowa
Wind farm availability modeling based on bayesian networks and semi-Markov processes
Autorzy:
Sobolewski, R. A.
Powiązania:
https://bibliotekanauki.pl/articles/267825.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
energetyka wiatrowa
niezawodność
sieci Bayesowskie
procesy semi-Markowa
wind energy
availability
Bayesian networks
semi-Markov processes
Opis:
Niezawodność urządzeń technicznych farmy wiatrowej (FW) wpływa między innymi na moc wyjściową farmy. Ilościową miarą tej niezawodności może być rozkład prawdopodobieństwa kombinacji stanów gotowości elektrowni wiatrowych (EW) farmy, tj. stanów oznaczających ich gotowość do produkcji energii elektrycznej i przekazywania jej do sieci elektroenergetycznej. Miarę tę można stosować do np. ilościowej analizy wpływu różnych topologii FW i niezawodności urządzeń farmy na jej niezawodność oraz wyznaczać wartość oczekiwaną mocy farmy z uwzględnieniem niezawodności. W artykule przedstawiono modele probabilistyczne opisujące ilościowo niezawodność FW, wykorzystujące sieci Bayesowskie (BN) i procesy semi-Markowa (PSM). W artykule zaprezentowano przykład obliczeniowy dotyczący analizy niezawodności FW składającej się z 4 EW, potwierdzający użyteczność metody.
Factors that influence wind-farm output power also include the availability of a farm. The availability depends on: arrangements of a wind farm (WF), internal collection grid topology and reliability of electrical equipment included in WF (e.g. generators, transformers, cables, breakers, protective relays, busbars and so on). One of the measures of WF availability can be probability distribution of combinations of availability states of wind turbines generators (WTGs), where availability state means the WTG is able to generate and deliver power to external grid. This measure can be applied in e.g.: (1) study of different internal collection grid topologies and reliability of WF electrical equipment effects on availability of WF and (2) assessment of WF output power considering farm availability. In this work the probabilistic models of WF availability are presented. Because of stochastic nature of electrical equipment failures they rely on two modeling methods, i.e. Bayesian networks and semi-Markov processes. Both approaches allow taking into account the electrical equipment of WF, internal grid topology of WF and reliability characteristics of equipment. The case study of availability modeling is presented as well.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 42; 183-186
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wind Farm Reliability Modelling Using Bayesian Networks and Semi-Markov Processes
Modelowanie niezawodności farmy wiatrowej z wykorzystaniem sieci Bayesowskich i procesów semi-Markowa
Autorzy:
Sobolewski, R. A.
Powiązania:
https://bibliotekanauki.pl/articles/396950.pdf
Data publikacji:
2015
Wydawca:
ENERGA
Tematy:
wind power
reliability
Bayesian networks
semi-Markov processes
energetyka wiatrowa
niezawodność
sieci Bayesowskie
procesy semi-Markowa
Opis:
Technical reliability plays an important role among factors affecting the power output of a wind farm. The reliability is determined by an internal collection grid topology and reliability of its electrical components, e.g. generators, transformers, cables, switch breakers, protective relays, and busbars. A wind farm reliability’s quantitative measure can be the probability distribution of combinations of operating and failed states of the farm’s wind turbines. The operating state of a wind turbine is its ability to generate power and to transfer it to an external power grid, which means the availability of the wind turbine and other equipment necessary for the power transfer to the external grid. This measure can be used for quantitative analysis of the impact of various wind farm topologies and the reliability of individual farm components on the farm reliability, and for determining the expected farm output power with consideration of the reliability. This knowledge may be useful in an analysis of power generation reliability in power systems. The paper presents probabilistic models that quantify the wind farm reliability taking into account the above-mentioned technical factors. To formulate the reliability models Bayesian networks and semi-Markov processes were used. Using Bayesian networks the wind farm structural reliability was mapped, as well as quantitative characteristics describing equipment reliability. To determine the characteristics semi-Markov processes were used. The paper presents an example calculation of: (i) probability distribution of the combination of both operating and failed states of four wind turbines included i
Wśród czynników wpływających na moc wyjściową farmy wiatrowej (FW) istotną rolę odgrywa niezawodność techniczna. O niezawodności tej decydują m.in.: topologia wewnętrznej sieci elektroenergetycznej FW i niezawodność urządzeń elektrycznych wchodzących w jej skład, np. generatorów, transformatorów, kabli, łączników, zabezpieczeń elektroenergetycznych, szyn zbiorczych. Ilościową miarą niezawodności FW może być rozkład prawdopodobieństwa kombinacji stanów gotowości elektrowni wiatrowych (EW) farmy. Stan gotowości danej EW oznacza jej gotowość do produkcji energii elektrycznej i przekazywania jej do zewnętrznej sieci elektroenergetycznej, co oznacza zdatność EW oraz pozostałych urządzeń niezbędnych do przekazania energii do sieci zewnętrznej. Miarę tę można wykorzystywać m.in. do ilościowej analizy wpływu różnych topologii FW i niezawodności poszczególnych urządzeń farmy na jej niezawodność oraz wyznaczać wartość oczekiwaną mocy farmy z uwzględnieniem niezawodności. Wiedza ta może być przydatna w analizie niezawodności wytwarzania energii elektrycznej w systemach elektroenergetycznych. W artykule przedstawiono modele probabilistyczne opisujące ilościowo niezawodność FW z uwzględnieniem wspomnianych wyżej czynników technicznych. Do sformułowania modeli niezawodnościowych wykorzystano sieci Bayesowskie (BN) i procesy semi-Markowa (PSM). Za pomocą BN odwzorowano niezawodność strukturalną FW i charakterystyki ilościowe opisujące niezawodność urządzeń. Do wyznaczania tych charakterystyk zastosowano PSM. W artykule zaprezentowano przykład obliczeniowy dotyczący wyznaczenia: (i) rozkładu prawdopodobieństwa kombinacji stanów gotowości czterech EW wchodzących w skład FW i (ii) oczekiwanej mocy wyjściowej FW z uwzględnieniem jej niezawodności.
Źródło:
Acta Energetica; 2015, 3; 71-82
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extracting structure of Bayesian network from data in predicting the damage of prefabricated reinforced concrete buildings in mining areas
Wyodrębnianie struktury sieci Bayesowskiej z danych w prognozowaniu uszkodzeń żelbetowych budynków prefabrykowanych na terenach górniczych
Autorzy:
Rusek, Janusz
Firek, Karol
Słowik, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/1841950.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Bayesian network
damage
risk
prefabricated reinforced concrete structures
sieci Bayesowskie
uszkodzenia
ryzyko
prefabrykowane budynki żelbetowe
Opis:
This article presents the results of the research on the construction of a model for assessing the risk of damage to building structures located in mining areas. The research was based on the database on the structure, technical condition and mining impacts regarding 129 prefabricated reinforced concrete buildings erected in the industrialised large-block system, located in the mining area of the Legnica-Glogow Copper District (LGCD). The methodology of the Bayesian Belief Network (BBN) was used for the analysis. Using the score-based Bayesian structure learning approach (Hill-Climbing and Tabu-Search) as well as the selected optimisation criteria, 16 Bayesian network structures were induced. All models were subjected to quantitative and qualitative evaluation by verifying their features in the context of accuracy of prediction, generalisation of acquired knowledge and cause-effect relationships. This allowed to select the best network structure together with the corresponding optimisation criterion. The analysis of the results demonstrated that the Tabu-Search method adopting the optimisation criterion in the form of Locally Averaged Bayesian Dirichlet score (BDla) led to obtaining a model with the best features among all the selected models. The results justified the adoption of the BBN methodology as effective in the context of assessing the extent of damage to building structures in mining areas.
W artykule zaprezentowano wyniki badań dotyczących budowy modelu do oceny ryzyka powstawania uszkodzeń budynków usytuowanych na terenach górniczych. Podstawą do badań była baza danych nt. konstrukcji, stanu technicznego oraz wpływów górniczych dla 129 żelbetowych prefabrykowanych budynków wznoszonych w uprzemysłowionym systemie wielkoblokowym zlokalizowanych na terenie górniczym Legnicko-Głodowskiego Okręgu Miedziowego (LGOM). Do analiz zastosowano metodykę sieci przekonań Bayesa (BBN – Belief Bayesian Networks). Stosując podejście score-based Bayesian structure learning (Hill-Climbing oraz Tabu-Search) oraz wyselekcjonowane kryteria optymalizacyjne, wyłoniono 16 struktur sieci Bayesowskich. Wszystkie modele poddano ocenie ilościowej i jakościowej, weryfikując ich własności w kontekście trafności predykcji, generalizacji nabytej wiedzy oraz zależności przyczynowo-skutkowych. Pozwoliło to na wyselekcjonowanie najlepszej struktury sieci wraz z odpowiadającym kryterium optymalizacyjnym. Analiza wyników wykazała, że metoda Tabu-Search przy przyjęciu kryterium optymalizacyjnego w postaci Locally Averaged Bayesian Dirichlet score (BDla), prowadzi do uzyskania modelu o najlepszych własnościach spośród wszystkich wyłonionych modeli. Uzyskane rezultaty uzasadniają przyjęcie metodyki BBN, jako efektywnej w kontekście oceny zakresu uszkodzeń budynków na terenach górniczych.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 4; 658--666
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie transformaty Z w opisie zmian stanów obiektów
Approach of Z transform in description of changes of object states
Autorzy:
Rogala, T.
Powiązania:
https://bibliotekanauki.pl/articles/327452.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
modele regresji
identyfikacja zmian
sieci bayesowskie
regression model
identification of changes
Z-transform
Bayesian networks
Opis:
Niniejszy artykuł ma na celu przedstawienie spostrzeżeń i uwag dotyczących zastosowania transformaty Z do identyfikacji stanów obiektów, a przede wszystkim zmian tych stanów. W diagnostyce maszyn duża rolę odgrywa analiza zachodzących zmian stanów technicznych, będąca podstawą do prognozowania. Podstawowym problemem jest sposób interpretacji parametrów modeli diagnostycznych. Dotyczy to przede wszystkim sposobu analizowania wartości tych parametrów oraz w szczególności ich zmian. Zmiany związane ze stanem obiektu, odzwierciedlają się, bowiem w zmianach parametrów fizycznych, a te z kolei w parametrach modeli. Zastosowanie płaszczyzny zespolonej Z jako płaszczyzny reprezentacji modelu diagnostycznego może być pomocna w diagnozowaniu stanu obiektu. Praca jest kontynuacją wcześniejszych doświadczeń związanych z zastosowaniem diagnozowania maszyn wirnikowych w oparciu o analizę położenia biegunów i zer na płaszczyźnie zespolonej ciągłej.
The paper was devoted to present some notices and attentions in relation to application Z transform for purpose of identification of object state and most of all identification of their changes. An analysis of changes of technical states performs an elementary function in machine diagnostics and can be used in prediction. A manner of interpretation of the diagnostic model parameters is a principal problem. Most of all, it concern a way of analysis of values and changes of models parameters. Changes of object states are reflected in their physical parameters and they are next represented in model parameters. An application of complex plane Z as a plane of diagnostic model representation may be helpful in diagnosis of object states. This article is a continuance of earlier experiences connected with working out a method of diagnosing of rotating machine based on analysis of poles/zeros arrangement on the continuous complex plane
Źródło:
Diagnostyka; 2004, 30, T. 2; 93-96
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Node assignment problem in Bayesian networks
Autorzy:
Polańska, J.
Borys, D.
Polański, A.
Powiązania:
https://bibliotekanauki.pl/articles/908425.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
biostatystyka
sieci bayesowskie
przedział ufności
biostatistics
Bayesian networks
maximum likelihood
confidence intervals
Opis:
This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs’ roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 2; 233-240
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci bayesowskich do analizy intensywności występowania zakłóceń w elektroenergetycznych sieciach rozdzielczych
Bayesian networks application for analysis of intensity disturbances in electric distribution systems
Autorzy:
Ostaszewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/159749.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
sieci rozdzielcze
niezawodność
sieci bayesowskie
Opis:
W artykule przedstawiono koncepcję zastosowania sieci bayesowskich do analizy intensywności występowania zakłóceń w elektroenergetycznych sieciach rozdzielczych. Przedstawiono podstawowe pojęcia dotyczące niezawodności sieci rozdzielczych. Zaproponowano ogólny model sieci bayesowskiej do analizy wpływu czynników zewnętrznych na intensywność występowania zakłóceń. Jako przykład zastosowania przedstawiono bayesowski diagram wpływu trzech zjawisk atmosferycznych na intensywność występowania zakłóceń w elektroenergetycznych liniach napowietrznych średniego napięcia. Omówiono rodzaje i sposoby pozyskiwania informacji niezbędnych do pogłębionej analizy niezawodności sieci rozdzielczych.
Conception of bayesian networks application for analysis of intensity disturbances in electric distribution systems is presented in this paper. Basic ideas concerning reliability distribution systems are presented. General model of bayesian network to analysis external factors influence for intensity of disturbances is proposed. The influence bayesian diagram of three atmospheric phenomenon for intensity of disturbances was considered. Types and methods to win indispensable information to deep analysis reliability of distribution systems are discussed.
Źródło:
Prace Instytutu Elektrotechniki; 2008, 236; 183-199
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of dynamic Bayesian networks to risk assessmnet in medicine
Zastosowanie dynamicznych rozkładów Gaussowskich przy pomocy algorytmu ewolucji różnicowej
Autorzy:
Oniśko, A.
Powiązania:
https://bibliotekanauki.pl/articles/341045.pdf
Data publikacji:
2010
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
dynamiczne sieci bayesowskie
wyznaczanie ryzyka w medycynie
dynamic Bayesian networks
risk assessment in medicine
Opis:
Dynamic Bayesian networks (DBNs) offer a framework for explicit modeling of temporal relationships, and are useful as both prognostic and diagnostic tools. In medicine, for example, they can assist in planning treatment options or in clinical management of patients. They have been also widely applied to genomics and proteomics. This paper shows how dynamic Bayesian networks can be used in a risk assessment in medicine and presents an example of an application to cervical cancer screening. The model is a convenient tool for assessing the risk of cervical precancer and invasive cervical cancer over time. These quantitative risk assessments are helpful for establishing the optimal timing of follow-up screening and are the first step toward generating individualized reevaluation scheduling.
Dynamiczne sieci bayesowskie (DBNs) pozwalają na modelowanie zależności czasowych. Modele te są niejednokrotnie używane w prognostyce. Na przykład w medycynie, jako narzędzia do prognozowania czy też planowania terapii. Dynamiczne siecibayesowskie sa˛ też szeroko stosowane w genomice oraz w proteomice. Atrykuł ten opisuje, w jaki sposób dynamiczne sieci bayesowskie mogą być zastosowane w wyznaczaniu ryzyka w medycynie. W pracy przedstawiono przykład zastosowania dynamicznych sieci bayesowskich w profilaktyce raka szyjki macicy. Prezentowany model został zbudowany w oparciu o dwa źródła wiedzy: opinie eksperta oraz dane medyczne. Model ten pozwala na wyznaczanie ryzyka zachorowania na raka szyjki macicy. Wartości ryzyka wyznaczane przez model pozwalają na określenie optymalnego czasu wykonania kolejnych badań przesiewowych oraz na zindywidualizowanie procesu profilaktyki.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2010, 5; 35-49
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies