Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć neuronowa Kohonena" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Od Bertina i Hotellinga do Zadeha i Kohonena, czyli o zastosowaniu sztucznych sieci neuronowych w kartografii tematycznej
From Bertin and Hotelling to Zadeh and Kohonen, or about applications of neutral networks in thematic cartography
Autorzy:
Kępińska, M.
Olszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/204234.pdf
Data publikacji:
2002
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
kartografia
sieć neuronowa Kohonena
kartografia tematyczna
Opis:
W artykule omówiono wybrane współczesne metody klasyfikowania danych oraz pokazano możliwość ich wykorzystania w kartografii. Szczególną uwagę zwrócono na możliwość zastosowania sieci neuronowych Kohonena jako narzędzia nienadzorowanej klasyfikacji danych przestrzennych.
The article discusses selected contemporary methods of multi-feature data and shows their possible applications in cartography. Graphic information processing described by J. Bertin and principal components analysis created by H. Hotelling, which enables the transfer of results from n-dimensional space to three-, two-, and even one-dimensional space, are examples of non-standard classification in cartography. An examples of spatial data classification using L.A. Zadeh's theory of fuzzy sets is presented. In this classification particuler objects belong to different classes, with various levels of subordination. The article draws special attention to possibility of using neural networks (NN) as a tool for unsupervised classification of spatial data. NN using systems are widely applied in branches of knowledge, which research prediction and classification. From the point of view of source data classification, it is interesting to use NN prepared by unsupervised learning. A so called Kohonen's network is an example of such structure. During the learning process this network does not receive feedback on the correctness of particular answers. Not knowing the expected output information, the network selflearns to recognize data structure. The outer surface of the network creates a, so called, Kohonen topological map, which projects the relations of similarity between the features of analyzed objects into one- or two-dimensional space. The article presents two examples of practical applications of Kohonen's network in classification of multi-feature spatial data. Presented multi-feature data classification methods, despite high differentiation of algorithms, show similar approach to the discussed problem. Self-learning of Kohonen's network, like permutation method, consists in revealing the structure of source data. Application of neural networks, similarly to the method of principal components, allows to reduce the dimension of the space of attributes. In neural networks, as in the classification method basing on theory of fuzzy sets, the final interpretation should be preceded by an estimation of the level of activation of particular neurons. Application of one-dimensional out surface of Kohonen's net-work makes it possible to directly present the classification results on a thematic map, which is optimal from a cartographic point of view.
Źródło:
Polski Przegląd Kartograficzny; 2002, T. 34, nr 2, 2; 103-114
0324-8321
Pojawia się w:
Polski Przegląd Kartograficzny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowej Kohonena do wizualizacji danych MPG
Use of Kohonen neural network in MPG data visualisation
Autorzy:
Oszutowska-Mazurek, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/135818.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć neuronowa Kohonena
samoorganizujące się mapy
SOM
wizualizacja danych
dane MPG
Kohonen neural network
self organizing map
Opis:
Wstęp i cel: Zastosowanie sieci neuronowych Kohonena zapewnia zmniejszenie wielowymiarowości danych. Wizualizacja w postaci map samoorganizujących się (SOM) jest użytecznym narzędziem do wstępnego kastrowania (grupowania) danych. Materiał i metody: Wizualizację przeprowadzona dla rzeczywistych danych, udostępnionych przez uniwersytet w Kalifornii za pomocą oprogramowania SNNS v.4.3. Głównym celem pracy jest zastosowanie sieci neuronowych Kohonena zapewniające zmniejszenie wielowymiarowości danych. Wyniki: Otrzymano wizualizacje danych wskazujące jednoznacznie na dodatnie i ujemne korelacje danych MPG. Wniosek: Mapy samoorganizujące się mogą być dedykowane wizualizacji danych wielowymiarowych jednak wyniki zależą od sposobu mapowania danych wejściowych, zwłaszcza o charakterze jakościowym, nawet jeśli stosowana jest normalizacja każdego z parametrów.
Introduction and aim: The use of Kohonen neural network ensures the decrease of data multidimensionality. Visualisation called Self organized maps is useful tool for preliminary data clustering. Material and methods: The visualisation of real data set was obtained with the use of program SNNS v.4.3 for real dataset from California University. The main aim of this paper is the use of Kohonen neural network to ensure the reduction of multidimensional data. Results: Obtained visualisations of data indicate unambiguously positive and negative correlations for MPG data Conclusion: Self organising maps could be dedicated to multidimensional data visualisation and preliminary quality assessment, but the results depend on the mapping method of input data, especially quantity type, even if normalisation of every parameter is provided.
Źródło:
Problemy Nauk Stosowanych; 2016, 4; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie samoorganizujących sieci neuronowych Kohonena w klasyfikacji sejsmofacjalnej (rejon Ujkowice - Batycze)
Application of Kohonens Self Organizing Networks in seismofacies classification (the Ujkowice - Batycze area)
Autorzy:
Dzwinel, K.
Haber, A.
Krawiec, D.
Powiązania:
https://bibliotekanauki.pl/articles/184042.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
atrybuty sesjmiczne
analiza sejsmofacjalna
krosskorelacja
samoorganizująca sieć neuronowa Kohonena
seismic attributes
seismofacies analysis
crosscorrelation Kohonen's Self Organizing Networks
Opis:
Artykuł przedstawia zastosowanie samoorganizujących sieci neuronowych Kohonena w klasyfikacji formy zapisu sejsmicznego. Klasyfikacja ta jest jednym z podstawowych elementów analizy sejsmofacjalnej, prowadzącej do wyciągnięcia znaczących wniosków poszukiwawczych. Istotnymi elementami takiej analizy są: wybór atrybutów sejsmicznych oraz użycie właściwego sposobu klasteryzacji. Do klasteryzacji użyto atrybutów AVA, które niosą ze sobą informacje o własnościach petrofizycznych skał. W celu zbadania rozkładu facji sejsmicznej na wybranym obszarze posłużono się dodatkowo innymi metodami wielowymiarowej analizy atrybutów sejsmicznych: klasyfikacją wybranego obszaru krossplotu "intercept-gradient" oraz klasteryzacją wykonaną metodą minimalizującą iloczyn odległości obiektów w wydzielanych grupach. Weryfikacji optymalnej metody klasyfikacji danych dokonano na podstawie obserwacji kształtów klastrów i ich charakterystyk.
This paper presents the application of Kohonen's Self Organizing Networks in classification of seismic waveform. The classification is one of the basic elements of seismofacies analysis and it often leads to significant exploratory conclusions. Important elements of this kind of analysis are: selection of seismic attributes and usage of appropriate clustering method. There were used AVA attributes, which include information about petrophysical properties of rocks. There used two additional multi-dimensional methods to examine seismic facies distribution on selected area: classification of chosen crossplot intercept-gradient area and classification carried out by method which minimizes the product of objects distances in groups. Verification of optimal method for data classification was made based on observation of clusters shape and their characteristic due to insufficient information from wells.
Źródło:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; 2006, 32, 4; 441-450
0138-0974
Pojawia się w:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the kohonen neural network in analysis of the measurement results of the polarization mode dispersion
Zastosowanie sieci neuronowej kohonena do analizy wników pomiaru dyspersji polaryzacyjnej
Autorzy:
Torbus, S.
Kolasa, M.
Długosz, R.
Powiązania:
https://bibliotekanauki.pl/articles/389807.pdf
Data publikacji:
2010
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
dyspersja polaryzacyjna
metoda interferometryczna pomiaru PMD
analiza statystyczna wyników pomiarów
sieć neuronowa Kohonena
polarization mode dispersion
interferometric method for measuring PMD
statistical analysis
Kohonen neural Network
Opis:
This paper presents a subject of the Polarization Mode Dispersion (PMD). PMD is characteristic for a single mode optical fiber transmission. Several aspects have been presented in the paper, such as the interferometric method for measuring the PMD, as well as the statistical analysis of the measurement results contrasted with the analysis of the same results by use of the Kohonen neural network (KNN).
W pracy omówiono zagadnienie dyspersji polaryzacyjnej – PMD (ang. Polarization Mode Dispersion), która jest charakterystyczna dla transmisji z wykorzystaniem jednomodowego włókna światłowodowego. Przedstawiono również interferometryczną metodę pomiaru współczynnika dyspersji polaryzacyjnej, statystyczną analizę rzeczywistych wyników pomiaru oraz analizę tych samych wyników pomiaru za pomocą sieci neuronowej Kohonena.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2010, 13; 55-66
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci Kohonena i wykresu rozrzutu do identyfikacji grup miodów według ich cech elektrycznych
Application of Kohonen map and a scatter diagram for identification of honey groups according to their electric features
Autorzy:
Łuczycka, D.
Pruski, K.
Powiązania:
https://bibliotekanauki.pl/articles/291382.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
miód
właściwości elektryczne
sztuczna sieć neuronowa
sieci Kohonena
honey
electric properties
artificial neuron networks
Kohonen maps
Opis:
Celem pracy jest wykonanie analiz symulacyjnych bazujących na sieci Kohonena i skalowaniu wielowymiarowym, oraz możliwość zastosowania tych technik do identyfikacji grup miodów odmianowych pod względem cech elektrycznych. Przebadano przenikalność elektryczną, współczynnik strat dielektrycznych oraz przewodność szesnastu gatunków miodów (spadziowe i nektarowe). W wyniku przeprowadzonych analiz stwierdzono, że sieci Kohonena oraz skalowanie wielowymiarowe są dobrymi narzędziami do określania liczności i składu gatunkowego grup miodów odmianowych. Właściwą architekturą sieci Kohonena tworzącą poprawną mapę topologiczną, dla analizowanych cech miodu, jest mapa zbudowana z 9 neuronów wyjściowych o wymiarach 3x3.
The purpose of the work is to carry out simulation analysis which are based on Kohonen map and multidimensional scaling and the possibility of application of these technologies for identification of cultivar honey groups in relation to their electric properties. Electric conductivity, coefficient of dielectric losses and conductivity of 16 cultivars of honey (honeydew and nectar honey) were researched. As a result of the analysis which was carried out, it was determined that Kohonen map and multidimensional scaling are good devices for determining the number and species composition of cultivar honey groups. A map formed of 9 output neurons of 3x3 dimensions is the proper architecture of Kohonen map which forms a correct topology map for the analysed properties of honey.
Źródło:
Inżynieria Rolnicza; 2012, R. 16, nr 2, t. 2, 2, t. 2; 169-175
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies