Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć bayesowska" wg kryterium: Temat


Wyświetlanie 1-19 z 19
Tytuł:
Analiza porównawcza wybranych klasyfikatorów w diagnozowaniu uszkodzeń przekładni zębatych
A comparison of selected classifiers in gear fault diagnosis
Autorzy:
Piekoszewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/313178.pdf
Data publikacji:
2017
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
klasyfikatory
diagnozowanie
sieć bayesowska
classifiers
diagnosis
Bayesian network
Opis:
Niewielkie uszkodzenie przekładni zębatej może prowadzić do poważnej awarii urządzenia. Zatem, bardzo ważnym jest wykrycie takich defektów na ich początkowym etapie powstawania aby zapobiec dalszym uszkodzeniom. Praca przedstawia kilka wybranych teoretycznych narzędzi z obszaru sztucznej inteligencji zastosowanych do rozwiązania problemu diagnozowania uszkodzeń przekładni zębatych. Rozważanymi narzędziami są: perceptron wielowarstwowy, sieć neuronowa o radialnych funkcjach bazowych, drzewo decyzyjne, sieć bayesowska, maszyna wektorów podpierających oraz algorytm k najbliższych sąsiadów. Rezultaty wszystkich eksperymentów zostały otrzymane z wykorzystaniem rzeczywistych danych oraz aplikacji WEKA (ang. Waikato Environment for Knowledge Analysis) dostępnej na stronach Uniwersytetu Waikato w Nowej Zelandii.
Minor gear damage may lead to serious failures of the device. Thus, it is very important to detect such damage as early as possible to prevent further damage. This paper presents a selection of several theoretical tools from the field of artificial intelligence and their application in gear fault classification. The considered tools are: feed forward neural network (multilayer perception), neural network with radial basis functions, decision tree, Bayesian network, support vector machine, and k-nearest neighbor algorithm. All numerical experiments presented in the paper were performed with the use of real-world dataset and WEKA (Waikato Environment for Knowledge Analysis) software, available at the server of the University of Waikato.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2017, 18, 12; 1233-1236, CD
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Player modeling using Bayesian networks
Modelowanie gracza przy użyciu sieci Bayesowskiej
Autorzy:
Kościuk, K.
Drużdżel, M.
Powiązania:
https://bibliotekanauki.pl/articles/404055.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
modelowanie gracza
sieć bayesowska
prawdopodobieństwo
player modeling
Bayesian network
probability
Opis:
Typically programs for game playing use the Minimax strategy, which assumes a perfectly rational opponent whose actions are performed optimally. However, most human opponents depart from rationality. In this case, the best move at any given step may not be one that is indicated by MiniMax and an algorithm that takes into consideration humans imperfection will perform better. In order to consider player's weaknesses, it is necessary to model the opponent – learn and know his/her strategies. We build a Bayesian network to model the player. We learn the conditional probability tables in the network from data collected in the course of the game.
Algorytmy grające w gry zazwyczaj używają strategii Minimax zakładającej perfekcyjność przeciwnika, który wybiera zawsze najlepsze ruchy w grze. Gracze jednakże mogą nie działać całkiem racjonalnie. Algorytm, który weźmie to pod uwagę, może dawać lepsze wyniki niż Minimax. Aby wykorzystać słabości przeciwnika, należy stworzyć jego model. W tym celu zbudowaliśmy sieć bayesowską, w której tworzymy tablicę prawdopodobieństw z danych zbieranych w trakcie gry.
Źródło:
Symulacja w Badaniach i Rozwoju; 2010, 1, 2; 151-158
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie stanów czynnościowych w języku sieci bayesowskich
Modelling of functional statuses in the language of Bayesian networks
Autorzy:
Pawlak, H.
Maksym, P.
Powiązania:
https://bibliotekanauki.pl/articles/287368.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
wiedza
sieć bayesowska
model komputerowy
knowledge
Bayesian network
computer model
Opis:
Zastosowanie sieci bayesowskiej do modelowania stanów czynnościowych przedstawiono z perspektywy budowania komputerowego systemu reprezentacji wiedzy. Budowę modelu poprzedzono opracowaniem grafu stanów i przejść zmian pozycji ciała przy wykonywaniu czynności roboczych związanych pakowaniem serków homogenizowanych.
The use of a Bayesian network for modelling of functional statuses has been shown from the perspective of construction of a computerised knowledge representation system. The model construction was preceded with the development of a graph of statuses and transitions of body position changes while carrying out work operations involved in cream cheese packaging.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 173-177
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generations in Bayesian networks
Generacje w sieciach bayesowskich
Autorzy:
Litvinenko, Alexander
Litvinenko, Natalya
Mamyrbayev, Orken
Shayakhmetova, Assem
Powiązania:
https://bibliotekanauki.pl/articles/407896.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Bayesian network
AgenaRisk
oriented graph
vertices generation
sieć bayesowska
graf zorientowany
generacja wierzchołków
Opis:
This paper focuses on the study of some aspects of the theory of oriented graphs in Bayesian networks. In some papers on the theory of Bayesian networks, the concept of “Generation of vertices” denotes a certain set of vertices with many parents belonging to previous generations. Terminology for this concept, in our opinion, has not yet fully developed. The concept of “Generation” in some cases makes it easier to solve some problems in Bayesian networks and to build simpler algorithms. In this paper we will consider the well-known example “Asia”, described in many articles and books, as well as in the technical documentation for various toolboxes. For the construction of this example, we have used evaluation versions of AgenaRisk.
Niniejszy artykuł koncentruje się na badaniu pewnych aspektów teorii zorientowanych grafów w sieciach bayesowskich. W niektórych artykułach na temat teorii sieci bayesowskich pojęcie „generacji wierzchołków” oznacza pewien zestaw wierzchołków z wieloma rodzicami należącymi do poprzednich generacji. Terminologia tego pojęcia, naszym zdaniem, nie została jeszcze w pełni rozwinięta. Koncepcja „Generacji” w niektórych przypadkach ułatwia rozwiązywanie niektórych problemów w sieciach bayesowskich i budowanie prostszych algorytmów. W tym artykule rozważymy dobrze znany przykład „Azja”, opisany w wielu artykułach i książkach, a także w dokumentacji technicznej różnych zestawów narzędzi. Do budowy tego przykładu wykorzystaliśmy wersje testowe AgenaRisk.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 3; 10-13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieć bayesowska jako narzędzie pozyskiwania wiedzy z ekonomicznej bazy danych
Bayesian network as a tool of extracting knowledge from an economic database
Autorzy:
Olbryś, J.
Powiązania:
https://bibliotekanauki.pl/articles/341033.pdf
Data publikacji:
2007
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sieć bayesowska
system wspomagający decyzje inwestycyjne
diagram wpływu
Bayesian networks
investment decision support system
influence diagram
Opis:
Proces decyzyjny w inwestowaniu rozpoczyna się od percepcji i przetwarzania napływających informacji. Podłoże decyzji stanowią przekonania dotyczące prawdopodobieństwa zajścia określonego zdarzenia. Jednostki racjonalne posługują się narzędziami teorii prawdopodobieństwa i statystyki, rozumując zgodnie z prawem Bayesa, czyli aktualizując wyobrażenia o prawdopodobieństwie zdarzenia wraz z ujawnianiem wszelkich nowych informacji, zarówno ilościowych, jak i jakościowych. Wydaje się zatem, że bardzo dobrym narzędziem wspomagającym decyzje inwestycyjne może być odpowiednio skonstruowany model sieci bayesowskiej (Bayesian Network). W artykule postawiono za cel główny prezentację możliwości zastosowania modelu sieci bayesowskiej do pozyskiwania wiedzy z ekonomicznej bazy danych, z uwzględnieniem informacji jakościowych oraz preferencji i subiektywnych ocen analityka finansowego, podejmującego decyzje w warunkach niepewności.
Making a decision in investment starts from perception and analysis of incoming information. Rational investors reason according to Bayes formula and try to develop posterior probabilities after new evidence has been added. Virtually all decisions that investors make are exercises in probability. Bayesian networks have been used in different decision support system contexts that combine qualitative and quantitative information. Main goal of this paper is to present Bayesian network as a tool of extracting knowledge from an economic database, with respect to historical quantitative information, uncertain qualitative information, incomplete knowledge and evidence.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2007, 2; 93-107
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Imprecise sensitivity analysis of system reliability based on the Bayesian network and probability box
Niedokładna analiza czułościowa niezawodności systemu w oparciu o sieć bayesowską i pole prawdopodobieństwa (p-box)
Autorzy:
Liang, He
Mi, Jinhua
Bai, Libing
Cheng, Yuhua
Powiązania:
https://bibliotekanauki.pl/articles/1841867.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
bayesian network
probability box
sensitivity analysis
reliability analysis
sieć bayesowska
pole prawdopodobieństwa
analiza czułości
analiza niezawodności
Opis:
Sensitivity analysis measures how changes in system inputs affect outputs. Previously, a large amount of sensitivity analysis research was relevant to the precise probability that is regarded as an ideal condition of engineering. Due to insufficient test samples and the low accuracy of test data, system reliability with hybrid uncertainty is difficult to be described as a precise value. As a profusion of highly integrated electromechanical equipment is applied in modern life, it is impossible to apply sufficient resources to eliminate the stochastic property of every component, which necessitates the identification of highly sensitive components to efficiently reduce imprecision. Hence, based on the theory of imprecise probability, imprecise sensitivity analysis has become a popular research topic in the last decade. In this paper, a method for uncertain system reliability and imprecise sensitivity analysis is proposed based on a Bayesian network, a probability box and the pinching method. The feasibility and accuracy of the combined method are fully verified through the evaluation and analysis of a numerical example and a case study of an electromechanical system, and the highly sensitive components that heavily influence the imprecision of system outputs are accurately identified.
Celem analizy czułościowej jest badanie w jakim stopniu zmiany danych wejściowych systemu wpływają na dane wyjściowe. Dotychczasowe badania z wykorzystaniem analizy czułościowej były związane z dokładnym prawdopodobieństwem postrzeganym w inżynierii jako warunek idealny. Przy niewystarczającej wielkości badanej próby i niskiej dokładności danych testowych, niezawodność systemu o hybrydowej niepewności trudno opisać w sposób dokładny. Biorąc pod uwagę fakt, że we współczesnym świecie wykorzystuje się duże ilości wysoce zintegrowanych urządzeń elektromechanicznych, niemożliwa jest alokacja wystarczających zasobów w celu wyeliminowania właściwości stochastycznych każdego elementu. Oznacza to, że aby zredukować niedokładność, konieczna jest identyfikacja komponentów o wysokiej czułości. Dlatego też popularnym przedmiotem badań ostatniej dekady stała się niedokładna analiza czułości, bazująca na teorii niedokładnego prawdopodobieństwa. W artykule zaproponowano metodę analizy niezawodności niepewnego systemu jak również niedokładnej analizy czułościowej w oparciu o sieć bayesowską, pole prawdopodobieństwa i metodę pinch point. Możliwość wykorzystania i dokładność metody zostały w pełni potwierdzone na podstawie przykładu liczbowego jak również studium przypadku systemu elektromechanicznego; proponowana metoda pozwoliła na poprawne określenie wysoce czułych elementów systemu, które w dużym stopniu wpływają na niedokładność danych wyjściowych układu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 508-519
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of the possibility of using Bayesian nets and Petri nets in the process of selecting additive manufacturing technology in a manufacturing company
Autorzy:
Topczak, Marcin
Śliwa, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/1837799.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
additive manufacturing
Bayesian network
Petri nets
process modelling
produkcja dodatkowa
Sieć bayesowska
Sieci Petriego
modelowanie procesów
Opis:
The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions.
Źródło:
Applied Computer Science; 2021, 17, 1; 5-16
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The application of dynamic bayesian network to reliability assessment of emu traction system
Zastosowanie dynamicznych sieci bayesowskich do oceny niezawodności elektrycznego systemu trakcyjnego
Autorzy:
Wang, Y.
Bi, L.
Wang, S.
Lin, S.
Xiang, W.
Powiązania:
https://bibliotekanauki.pl/articles/302105.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
dynamiczna sieć bayesowska
system trakcyjny
ocena niezawodności
algorytm przeszukiwania wszerz
DBN
traction system
reliability assessment
breadth-first-search algorithm
Opis:
W artykule omówiono nowatorskie zastosowanie dynamicznej sieci bayesowskiej (DBN) do oceny niezawodności elektrycznego systemu trakcyjnego ze szczególnym uwzględnieniem metod modelowania DBN. W związku z rosnącą złożonością elektrycznych systemów trakcyjnych oraz wynikającą z niej coraz większą ilością współzależności między komponentami, systemy te narażone są coraz częściej na awarie części składowych. Chociaż istnieje wiele badań dotyczących oceny niezawodności systemów trakcyjnych, stosowane obecnie narzędzia nie mają odpowiedniej mocy modelowania koniecznej do opisu zależności funkcjonalnych i czasowych pomiędzy częściami składowymi. W niniejszej pracy zaproponowano nową metodę modelowania generowania DBN, którą można stosować w odniesieniu do systemów składających się z pewnych określonych komponentów oraz różnych typów rozchodzących się przez nie przepływów. Zależności funkcjonalne i czasowe opisano, odpowiednio, za pomocą tablicy komponentowych prawdopodobieństw warunkowych (Component-based Conditional Probability Table, CPT) oraz tablicy czasowo-zależnych prawdopodobieństw warunkowych. Ponieważ złożoność systemu nie pozwala na zamodelowanie go w prosty sposób jako DBN, do automatycznej budowy modelu DBN wykorzystano algorytm przeszukiwania wszerz (Breadth-First-Search). Oceny niezawodności systemu trakcyjnego z wykorzystaniem proponowanej metody opartej na DBN można dokonywać w dowolnym czasie, co ma ogromne znaczenie przy planowaniu konserwacji w celu zapewnienia bezpieczeństwa systemu.
The article introduces a novel application of a Dynamic Bayesian Network (DBN) in the reliability assessment with regard to the traction system of Electric Multiple Units (EMU), which focus on modeling approach to DBN construction. As a result of high complexity and growing interdependencies, it is increasingly vulnerable to the failure of components. Although many studies on the use of BN for estimating the system reliability have been conducted, there is a lack of effective modeling power regarding current tools in depicting both functional and temporal dependencies between components. In this paper, a new modeling approach to DBN generation is submitted, which can be applied to the system made up of certain components and different types of flows propagating through them. The Component-based CPT (Conditional Probability Table) and Time-dependent CPT are used to describe functional dependencies and temporal dependencies respectively. As the complexity of the system cannot be modeled in a tractable way as a DBN, a Breadth-First-Search (BFS) algorithm is introduced for the construction of the DBN model in an automated manner. With the application of the proposed DBN-based approach, the reliability of the traction system can be evaluated at any given time, which is of great significance to determine the plan of maintenance in an effort to ensure the system safety.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 3; 349-357
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel reliability estimation method of multi-state system based on structure learning algorithm
Nowatorska metoda oceny niezawodności systemów wielostanowych w oparciu o algorytm uczenia struktury
Autorzy:
Li, Zhifeng
Wang, Zili
Ren, Yi
Yang, Dezhen
Lv, Xing
Powiązania:
https://bibliotekanauki.pl/articles/301718.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
structure learning
multi-state system (MSS)
dependent failure
analiza niezawodności
sieć bayesowska
uczenie struktury
system wielostanowy
uszkodzenie zależne
Opis:
Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are difficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted automatically. An illustrative example is used to demonstrate the performance of the method.
Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 170-178
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Projekt koncepcyjny bazy danych do przechowywania nagrań z badań artykulograficznych mowy polskiej
Conceptual design of a database to store recordings from articulographic studies of Polish speech
Autorzy:
Wielgat, R.
Jędryka, R.
Mik, Ł.
Król, D.
Powiązania:
https://bibliotekanauki.pl/articles/93088.pdf
Data publikacji:
2017
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Tarnowie
Tematy:
artykulacja elektromagnetyczna
baza danych
sieć bayesowska
odwrócenie mowy
kamera akustyczna
fonetyka artykulacyjna
fonetyka akustyczna
electromagnetic articulography
database
Bayesian network
speech inversion
acoustic camera
articulatory phonetics
acoustic phonetics
Opis:
W artykule opisano strukturę i funkcjonalność bazy danych artykulograficznych do przechowywania danych z badań przeprowadzanych z wykorzystaniem artykulografu elektromagnetycznego, kamery akustycznej i 3 kamer wideo. Baza danych umożliwia selektywne pobieranie różnych typów danych, w szczególności dotyczących mówcy, sesji nagraniowej, nagrań oraz eksperymentów. Opisano strukturę i budowę bazy danych. Przedstawiono również potencjalne przyszłe zastosowania do przeprowadzania analiz statystycznych oraz w eksperymentach dotyczących inwersji mowy z wykorzystaniem modeli sieci Bayesa.
The article describes the structure and functionality of the articulographic database for storing data from articulographic research using an electromagnetic articulograph, an acoustic camera and 3 video cameras. The database enables selective extraction of various types of data for scientific research and interoperates with programs that carry out experiments. Structure and construction of the database is described. Potential future application in statistical analysis and experiments on speech inversion using dynamic Bayesian networks (DBN) was also presented.
Źródło:
Science, Technology and Innovation; 2017, 1, 1; 64-72
2544-9125
Pojawia się w:
Science, Technology and Innovation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System reliability modeling and assessment for solar array drive assembly based on bayesian networks
Modelowanie i ocena niezawodności systemu w oparciu o sieci bayesowskie na przykładzie układu napędu paneli słonecznych
Autorzy:
Li, Y. F.
Mi, J.
Huang, H. Z.
Xiao, N. C.
Zhu, S. P.
Powiązania:
https://bibliotekanauki.pl/articles/302154.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
drzewo uszkodzeń
dynamiczne drzewo uszkodzeń
sieć bayesowska
niezawodność systemu
układ napędu paneli słonecznych
fault tree
dynamic fault tree
Bayesian network
system reliability
solar array drive assembly
Opis:
Along with the increase of complexity in engineering systems, there exist many dynamic characteristics within the system failure process, such as sequence dependency, functional dependency and spares. Markov-based dynamic fault trees can figure out the modeling of systems with these characteristics. However, when confronted with the issue of state space explosion resulted from the growth of system complexity, the Markov-based approach is no longer efficient. In this paper, we combine the Bayesian networks with the dynamic fault trees to model the reliability of such types of systems. The inference technique of Bayesian network is utilized for reliability assessment and fault probability estimation. The solar array drive assembly is used to demonstrate the effectiveness of this method.
Wraz ze wzrostem złożoności w systemach technicznych, pojawia się wiele charakterystyk dynamicznych w ramach procesu awarii systemu, takich jak zależność sekwencyjna, zależność funkcjonalna czy zabezpieczające elementy zapasowe. Oparte na koncepcjach Markowa dynamiczne drzewa uszkodzeń mogą posłużyć do modelowania systemów z powyższymi charakterystykami. Jednak w konfrontacji z problemem eksplozji stanów wynikającym ze wzrostu złożoności systemu, podejście oparte na teoriach Markowa nie jest już skuteczne. W niniejszej pracy łączymy sieci bayesowskie z dynamicznymi drzewami uszkodzeń w celu modelowania niezawodności tego typu systemów. Technikę wnioskowania sieci bayesowskiej wykorzystano do oceny niezawodności i prawdopodobieństwa wystąpienia uszkodzenia. Skuteczność niniejszej metody wykazano na przykładzie układu napędu paneli słonecznych.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 117-122
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Importance measure of probabilistic common cause failures under system hybrid uncertainty based on bayesian network
Oparta na sieci bayesowskiej miara ważności probabilistycznych uszkodzeń spowodowanych wspólną przyczyną w warunkach niepewności hybrydowej systemu
Autorzy:
Mi, Jinhua
Li, Yan-Feng
Beer, Michael
Broggi, Matteo
Cheng, Yuhua
Powiązania:
https://bibliotekanauki.pl/articles/1365216.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
probabilistic common cause failure
Bayesian network
α factor model
extended Birnbaum importance
probabilistyczne uszkodzenie spowodowane wspólną przyczyną
sieć bayesowska
model współczynnika α
rozszerzona miara ważności Birnbauma
Opis:
When dealing with modern complex systems, the relationship existing between components can lead to the appearance of various dependencies between component failures, where multiple items of the system fail simultaneously in unpredictable fashions. These probabilistic common cause failures affect greatly the performance of these critical systems. In this paper a novel methodology is developed to quantify the importance of common cause failures when hybrid uncertainties are presented in systems. First, the probabilistic common cause failures are modeled with Bayesian networks and are incorporated into the system exploiting the α factor model. Then, probability-boxes (bound analysis method) are introduced to model the hybrid uncertainties and quantify the effect of uncertainties on system reliability. Furthermore, an extended Birnbaum importance measure is defined to identify the critical common cause failure events and coupling impact factors when uncertainties are expressed by probability-boxes. Finally, the effectiveness of the method is demonstrated through a numerical example.
W przypadku nowoczesnych systemów złożonych, relacje zachodzące między komponentami mogą prowadzić do pojawienia się różnych zależności między ich uszkodzeniami, a tym samym do sytuacji w których kilka składowych systemu ulega uszkodzeniu jednocześnie w nieprzewidywalny sposób. Tego typu probabilistyczne uszkodzenia wywołane wspólną przyczyną (PCCF) mają ogromny wpływ na wydajność tych kluczowych systemów. W przedstawionym artykule opracowano nową metodę szacowania ważności PCFF w sytuacjach, gdy w systemie występują niepewności hybrydowe. W pierwszej kolejności, PCFF zamodelowano za pomocą sieci bayesowskich i włączono do systemu wykorzystującego model współczynnika α. Następnie, wprowadzono przedziały prawdopodobieństwa, tzw. probability boxes (bound analysis method), w celu zamodelowania niepewności hybrydowych i kwantyfikacji wpływu tych niepewności na niezawodność systemu. Ponadto zdefiniowano rozszerzoną miarę ważności Birnbauma, która pozwala zidentyfikować krytyczne zdarzenia PCCF oraz czynniki, które je wywołały, w przypadkach, gdy niepewności wyrażone są za pomocą probability boxes. Skuteczność metody wykazano na przykładzie numerycznym.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 111-120
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability analysis for multi-state system based on triangular fuzzy variety subset bayesian networks
Analiza niezawodności systemu wielostanowego z zastosowaniem sieci bayesowskich opartych na rozmytych podzbiorach zmienności opisanych przez trójkątną funkcję przynależności
Autorzy:
He, Q.
Zha, Y.
Zhang, R.
Sun, Q.
Liu, T.
Powiązania:
https://bibliotekanauki.pl/articles/302183.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
teoria zbiorów rozmytych
system wielostanowy
sieć bayesowska
wypadek podczas ruchu wózka windy
analiza niezawodności
reliability analysis
fuzzy set theory
Multi-State System
Bayesian network
elevator free movement accident
Opis:
W niniejszej pracy zaproponowano nową metodę analizy niezawodności systemów wielostanowych wykorzystującą sieci Bayesa (BN) oparte na rozmytych podzbiorach zmienności opisanych za pomocą trójkątnej funkcji przynależności. Metoda ta uwzględnia rozmyty charakter danych dotyczących uszkodzeń, wielostanowość systemu oraz zmienność prawdopodobieństwa wystąpienia uszkodzenia w czasie. BN, które znalazły zastosowanie w modelowaniu i metodach obliczeniowych, wykorzystuje się także do analizy niezawodności. W przedstawionych badaniach, analizę BN uzupełniono o elementy teorii zbiorów rozmytych wykorzystując do opisu prawdopodobieństwa wystąpienia uszkodzenia, podzbiory zmienności opisane przez trójkątną funkcję przynależności. Niepewność zależności logicznej pomiędzy awariami reprezentowanymi przez różne węzły sieci opisano za pomocą tabel rozmytego prawdopodobieństwa warunkowego. W pierwszej kolejności analizowano prawdopodobieństwo uszkodzenia każdego korzenia (węzła głównego) w funkcji czasu. Następnie, wyznaczono trójkątny rozmyty podzbiór zmienności, za pomocą którego opisano rozmyte prawdopodobieństwo uszkodzenia węzłów głównych. Podzbiór ten wykorzystano do analizy niezawodności systemu wielostanowego przy pomocy rozmytych BN. Artykuł kończy opis wypadku podczas ruchu wózka windy szybkobieżnej, który potwierdza skuteczność i możliwość praktycznego wykorzystania proponowanej metody. Wyniki pokazują, że proponowane podejście może skutecznie rozwiązywać na wczesnym etapie problemy związane z niepewnością informacji oraz wielostanowością systemu.
In this paper, a novel reliability analysis method for multi-state system is proposed on the basis of triangular fuzzy variety subset Bayesian network (BN). The method considers fuzziness, multi-state, and variety of failure probability over time. With advantages in modeling and computation, the BN is utilized for reliability analysis. Fuzzy set theory is introduced into the BN analysis by using triangular fuzzy variety subset to describe failure probability. The uncertainty of fault logical relationship between different nodes is described through fuzzy conditional probability tables. As a function of time, the failure probability of each root node is analyzed first. Subsequently, the triangle fuzzy variety subset is established to describe the fuzzy failure probability of root nodes. This subset is applied to analyze the reliability of multi-state system fuzzy BN. Finally, a case study on the car free movement accident of flexible high-speed elevator lift system is used to demonstrate the effectiveness and practicality of the proposed method. Results show that the proposed approach could effectively address the problems on information uncertainty and multi-state in the early stage.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 2; 158-165
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability analysis of complex uncertainty multi-state system based on Bayesian network
Zastosowanie sieci bayesowskiej do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności
Autorzy:
Wang, Haipeng
Duan, Fuhai
Ma, Jun
Powiązania:
https://bibliotekanauki.pl/articles/300676.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
complex uncertainty multi-state system
fuzzy mathematics
grey system theory
analiza niezawodności
sieć bayesowska
złożony system wielostanowy
niepewność
matematyka rozmyta
teoria szarych systemów
Opis:
Reliability analysis of complex multi-state system has uncertainty, which is caused by complex structures, limited test samples, and insufficient reliability data. By introducing fuzzy mathematics and grey system theory into the Bayesian network, the model of the grey fuzzy Bayesian network is built, and the reliability analysis method of complex uncertainty multi-state system with the non-deterministic membership function and the interval characteristic quantity is proposed in this paper. Using the trapezoidal membership function with fuzzy support radius variable to describe the fault state of the component, it can effectively avoid the influence of human subjective factors on the selection of the membership function and solve the problem that the fault states of the system and its components are difficult to define accurately. And the conditional probability table containing interval grey numbers is constructed to effectively express the uncertain fault logic relationship between the system and its components. Moreover, a parameter planning model of the system reliability characteristic quantities is constructed, and the system reliability characteristic quantities are expressed as the form of interval values. Finally, two sets of numerical experiments are conducted and discussed, and the results show that the proposed method is an effective and a promising approach to reliability analysis for complex uncertainty multi-state systems.
Analiza niezawodności złożonych systemów wielostanowych obarczona jest niepewnością związaną ze złożonością ich struktury, ograniczoną liczbą próbek badawczych i niewystarczającymi danymi dotyczącymi niezawodności. W przedstawionej pracy, wprowadzenie elementów matematyki rozmytej i teorii szarych systemów do sieci bayesowskiej umożliwiło budowę modelu szarej rozmytej sieci bayesowskiej i zaproponowanie metody analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności, która wykorzystuje niedeterministyczną funkcję przynależności oraz pojęcie interwałowej wielkości charakterystycznej. Zastosowanie trapezoidalnej funkcji przynależności z rozmytą zmienną promienia nośnego do opisu stanu uszkodzenia komponentu, pozwala zniwelować wpływ subiektywnego czynnika ludzkiego na wybór funkcji przynależności i eliminuje konieczność precyzyjnego definiowania stanu uszkodzenia systemu i jego elementów składowych. Opracowana tabela prawdopodobieństw warunkowych zawierająca szare liczby interwałowe pozwala wyrazić niepewne zależności logiki uszkodzeń między systemem a jego składnikami. Ponadto, w pracy skonstruowano model planowania parametrów charakterystycznych wielkości niezawodności systemu wyrażonych w postaci wartości interwałowych. W ostatniej części artykułu omówiono dwie serie eksperymentów numerycznych, których wyniki pokazują, że proponowana metoda stanowi skuteczne i obiecujące podejście do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 3; 419-429
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability and Risk Assessment of Aircraft Electric Systems
Niezawodność i ocena ryzyka układu elektrycznego samolotu
Autorzy:
He, L.
Yin, C.
Peng, W.
Yuan, R.
Huang, H.-Z.
Powiązania:
https://bibliotekanauki.pl/articles/301113.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
interval analytic hierarchy process
interval eigenvector method
Bayesian network
information fusion
risk assessment
proces przedziałowej hierarchii analitycznej
metoda przedziałowych wektorów własnych
sieć bayesowska
fuzja informacji
ocena ryzyka
Opis:
It is rather difficult in identifying the fault location and performing risk assessment for complex electronic systems. In this paper a reliability assessment method based on the interval analytic hierarchy process (IAHP) and Bayesian network is proposed to facilitate reliability and risk assessment. After considering the major fault factors, the interval eigenvector method (IEM) is also presented to assess the reliability and comprehensive weights of subsystems. The conditional probability matrices for the factors of risk are defined using an inference rule. Then an updating model of information fusion in the context of Bayesian network is established to assess the risk of system. The proposed method is demonstrated through the risk assessment of an aircraft electric system. The result of the illustrative example shows that the proposed method can not only incorporate the evidence information, but also synthesize all the historical information. A further dynamic adjustment in the safety and risk priority of control measures is quite effective to improve the reliability while mitigating the risk of the electric system.
Lokalizacja uszkodzeń oraz ocena bezpieczeństwa i ryzyka w przypadku złożonych systemów elektronicznych jest zadaniem dość trudnym. W niniejszej pracy zaproponowano metodę prognozowania niezawodności opartą na procesie przedziałowej hierarchii analitycznej (IAHP), która ma na celu ułatwienie diagnozy uszkodzeń i kontroli ryzyka. Po rozważeniu głównych czynników wywołujących uszkodzenia, zaprezentowano metodę przedziałowych wektorów własnych oraz zdefiniowano, przy użyciu reguły wnioskowania, macierze prawdopodobieństwa dla czynników wpływających na bezpieczeństwo i ryzyko. Następnie, stworzono odnawialny model fuzji informacji w kontekście wnioskowania bayesowskiego służący do oceny stanu zagrożenia Udowodniono, iż włączenie wiedzy eksperckiej do dynamicznej symulacji ułatwia lokalizację uszkodzeń oraz pozwala uzyskać informacje dotyczące diagnozy uszkodzeń. Studium przypadku pokazuje, że dynamiczne dostosowanie priorytetowości związanej z bezpieczeństwem i ryzykiem stosowanych środków kontroli w sposób dość skuteczny zwiększa niezawodność przy jednoczesnym zminimalizowaniu ryzyka w złożonym systemie elektronicznym.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 4; 497-506
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Bayesian networks approach for event tree time-dependency analysis on phased-mission system
Oparte na sieciach bayesowskich podejście do analizy zależności czasowychw systemach o zadaniach okresowych wykorzystujące metodę drzewa zdarzeń
Autorzy:
Li, X.-T.
Tao, L.-M.
Jia, M.
Powiązania:
https://bibliotekanauki.pl/articles/301908.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
time-dependency
Bayesian networks
event tree
fault tree
phased-mission system
reliability
risk analysis
zależność czasowa
sieć bayesowska
drzewo błędów
system o zadaniach okresowych
niezawodność
analiza ryzyka
Opis:
Event tree/ fault tree (E/FT) method is the most recognized probabilistic risk assessment tool for complex large engineering systems, while its classical formalism most often only considers pivotal events (PEs) being independent or time-independent. However, the practical difficulty regarding phased-mission system (PMS) is that the PEs always modelled by fault trees (FTs) are explicit dependent caused by shared basic events, and phase-dependent when the time interval between PEs is not negligible. In this paper, we combine the Bayesian networks (BN) with the E/FT analysis to figure such types of PMS based on the conditional probability to give expression of the phase-dependency, and further expand it by the dynamic Bayesian networks (DBN) to cope with more complex time-dependency such as functional dependency and spares. Then, two detailed examples are used to demonstrate the application of the proposed approach in complex event tree time-dependency analysis.
Metoda drzewa zdarzeń/drzewa błędów jest najbardziej znanym narzędziem probabilistycznej oceny ryzyka w złożonych, dużych systemach inżynieryjnych; jednak jej klasyczny formalizm najczęściej uwzględnia jedynie niezależne lub niezależne od czasu zdarzenia kluczowe. Praktyczną trudnością występującą w systemach o zadaniach okresowych jest to, że zdarzenia kluczowe, które zazwyczaj przedstawiane są w modelach drzewa błędów jako powiązane zależnościami jawnymi, mającymi związek ze wspólnym zdarzeniem podstawowym, tutaj powiązane są zależnościami czasowymi, jako że przedział czasowy pomiędzy pojedynczymi zdarzeniami kluczowymi nie jest bez znaczenia. W niniejszej pracy, połączyliśmy metodologie sieci Bayesa i analizy drzewa zdarzeń/ błędów aby opisać za pomocą pojęcia prawdopodobieństwa warunkowego, zależności czasowe w systemach o zadaniach okresowych, a następnie rozwinęliśmy tę metodę, wykorzystując dynamiczne sieci Bayesa, które pozwalają na analizę bardziej złożonych zależności czasowych, takich jak zależności funkcjonalne i związane z użyciem części zamiennych. W końcowej części pracy przedstawiliśmy dwa szczegółowe przykłady zastosowania proponowanej metody do analizy złożonych zależności czasowych w drzewach zdarzeń.
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 2; 273-281
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shock safety modeling method for low-voltage electric devices
Autorzy:
Korniluk, W.
Sajewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/141402.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zarządzanie bezpieczeństwem
system ekspertowy
sieć bayesowska
prawdopodobieństwo całkowite
bezpieczeństwo porażeniowe
safety management process
expert system
Bayesian network
total probability
protection reliability states
appearance of touch and electric shock states
risk analysis and assessment
Opis:
The article describes a shock safety modeling method for low-voltage electric devices, based on using a Bayesian network. This method allows for taking into account all possible combinations of the reliability and unreliability states for the shock protection elements under concern. The developed method allows for investigating electric shock incidents, analysing and assessing shock risks, as well as for determining criteria of dimensioning shock protection means, also with respect to reliability of the particular shock protection elements. Dependencies for determining and analysing the probability of appearance of reliability states of protection as well as an electric shock risk are presented in the article.
Źródło:
Archives of Electrical Engineering; 2010, 59, 3-4; 153-167
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shock safety modelling of indirect contact with low-voltage electric devices
Autorzy:
Korniluk, W.
Sajewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/141066.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zarządzanie bezpieczeństwem
system ekspertowy
sieć bayesowska
prawdopodobieństwo całkowite
ochrona przeciwporażeniowa
porażenie prądem elektrycznym
safety management process
expert system
Bayesian network
total probability
protection reliability states
appearance of touch and electric shock states
risk analysis and assessment
Opis:
The article presents a shock safety model of an indirect contact with a low-voltage electric device. This model was used for computations and analyses concerning the following: the probabilities of appearance of the particular shock protection unreliability states, electric shock states (ventricular fibrillation), contributions of the unreliability of different shock protection elements to the probability of occurrence of these states, as well as the risk of electric shock (and the shock safety), and contributions of the intensity of occurrence of damages to different shock protection elements to this risk. An example of a possibility to reduce the risk of an electric shock through changing the intensity of occurrence of damages to the selected protection elements was provided.
Źródło:
Archives of Electrical Engineering; 2011, 60, 3; 303-315
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability-aware zonotopic tube-based model predictive control of a drinking water network
Autorzy:
Khoury, Boutrous
Nejjari, Fatiha
Puig, Vicenç
Powiązania:
https://bibliotekanauki.pl/articles/2124779.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
robust MPC
zonotopes
Bayesian theory
drinking water network
sterowanie tolerujące uszkodzenia
zonotopy
teoria bayesowska
sieć wody pitnej
Opis:
A robust economic model predictive control approach that takes into account the reliability of actuators in a network is presented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required for the predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization process intractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into account and considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated to ensure robust constraint satisfaction, performance, stability as well as recursive feasibility through the formulation of an online tube-based MPC and an accompanying appropriate terminal set. Reliability is then modelled based on Bayesian networks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linear form by means of a linear parameter varying representation, mitigating any additional computational expense thanks to the formulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost of the MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and long term operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulated scenarios on the Barcelona drinking water network.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 2; 197--211
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-19 z 19

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies